Power Kripke-Platek set theory and the axiom of choice
暂无分享,去创建一个
[1] Michael Rathjen,et al. Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions , 2012, Epistemology versus Ontology.
[2] Michael Rathjen,et al. The Realm of Ordinal Analysis , 2007 .
[3] Michael Rathjen,et al. Relativized ordinal analysis: The case of Power Kripke-Platek set theory , 2014, Ann. Pure Appl. Log..
[4] Michael Rathjen,et al. From the weak to the strong existence property , 2012, Ann. Pure Appl. Log..
[5] Lawrence J. Pozsgay. Semi-intuitionistic set theory , 1972, Notre Dame J. Formal Log..
[6] Leslie H. Tharp. A Quasi-Intuitionistic Set Theory , 1971, J. Symb. Log..
[7] Michael Rathjen. An ordinal analysis of parameter free Π12-comprehension , 2005, Arch. Math. Log..
[8] Gerhard Max Jäger,et al. Theories for admissible sets : a unifying approach to proof theory , 1986 .
[9] Michael Rathjen,et al. Replacement versus collection and related topics in constructive Zermelo-Fraenkel set theory , 2005, Ann. Pure Appl. Log..
[10] Michael Rathjen,et al. Choice principles in constructive and classical set theories , 2010 .
[11] Michael Rathjen,et al. Fragments of Kripke-Platek set theory with infinity , 1993 .
[12] Harvey M. Friedman,et al. The lack of definable witnesses and provably recursive functions in intuitionistic set theories , 1985 .
[13] Lawrence S. Moss,et al. Power Set Recursion , 1995, Ann. Pure Appl. Log..
[14] Jon Barwise,et al. Admissible sets and structures , 1975 .
[15] A. R. D. Mathias,et al. The strength of Mac Lane set theory , 2001, Ann. Pure Appl. Log..
[16] S. Feferman. On the strength of some semi-constructive theories , 2009 .
[17] Michael Rathjen,et al. Proof-theoretic analysis of KPM , 1991, Arch. Math. Log..
[18] Michael Rathjen. An ordinal analysis of stability , 2005, Arch. Math. Log..
[19] Michael Rathjen,et al. Proof Theory of Reflection , 1994, Ann. Pure Appl. Log..
[20] Andrea Cantini,et al. On Weak Theories of Sets and Classes which are Based on Strict ∏ , 1985, Math. Log. Q..
[21] Michael Rathjen,et al. Recent Advances in Ordinal Analysis: Π1 2 — CA and Related Systems , 1995, Bulletin of Symbolic Logic.
[22] O. Veblen. Continuous increasing functions of finite and transfinite ordinals , 1908 .
[23] J. Avigad. Proof Theory , 2017, 1711.01994.
[24] W. Buchholz,et al. A simplified version of local predicativity , 1993 .
[25] Michael Rathjen,et al. How to Develop Proof-Theoretic Ordinal Functions on the Basis of Admissible Ordinals , 1993, Math. Log. Q..
[26] Harvey M. Friedman,et al. Countable models of set theories , 1973 .
[27] Yiannis N. Moschovakis,et al. Notes On Set Theory , 1994 .
[28] Gerhard Jäger,et al. On Feferman's operational set theory OST , 2007, Ann. Pure Appl. Log..
[29] Michael Rathjen,et al. Ordinal notations based on a weakly Mahlo cardinal , 1990, Arch. Math. Log..
[30] H. Friedman. Some applications of Kleene's methods for intuitionistic systems , 1973 .
[31] Michael Rathjen,et al. Theories and Ordinals in Proof Theory , 2006, Synthese.
[32] Ernst-Jochen Thiele. Über Endlich‐Axiomatisierbare Teilsysteme der Zermelo‐Fraenkelschen Mengenlehre , 1968 .
[33] Edward Stuart Russell,et al. Form and Function , 2009 .
[34] Gerhard Jäger,et al. Zur Beweistheorie Der Kripke-Platek-Mengenlehre Über Den Natürlichen Zahlen , 1980, Arch. Math. Log..
[35] Michael Rathjen. A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..
[36] Michael Rathjen,et al. Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM , 1994, Arch. Math. Log..