Theoretical study of the isotope effects in the non-adiabatic reaction of Ar+(J) with H2, D2, HD

[1]  M. Sizun,et al.  Theoretical investigation of the Ar+H2+(0⩽v⩽4, j=0)→ArH++H nonadiabatic reaction dynamics , 1997 .

[2]  G. D. Billing,et al.  Semi-classical treatment of chemical reactions , 1996 .

[3]  G. D. Billing,et al.  Theoretical investigation of the Ar+(J) + H2 → ArH+ + H reaction: semiclassical coupled wavepacket treatment , 1996 .

[4]  Ju‐Beom Song,et al.  A modified pairwise-energy model applied to exothermic ion-molecule reactions , 1996 .

[5]  G. D. Billing,et al.  SEMICLASSICAL COUPLED WAVE PACKET STUDY OF THE NONADIABATIC COLLISIONS AR+(J)+H2 : ZERO ANGULAR MOMENTUM CASE , 1996 .

[6]  G. D. Billing,et al.  WAVEPACKET CALCULATIONS ON ION-MOLECULE REACTIONS : THE CO-PLANAR APPROXIMATION , 1996 .

[7]  G. D. Billing,et al.  WAVE PACKET CALCULATIONS ON ION-MOLECULE REACTIONS , 1995 .

[8]  V. Aquilanti,et al.  The reaction of argon ions with hydrogen and deuterium molecules by crossed beams: Low energy resonances and role of vibronic levels of the intermediate complex , 1993 .

[9]  G. D. Billing,et al.  Reactive scattering by wave packet propagation. A semiclassical calculation of cross sections , 1993 .

[10]  P. Armentrout Isotope Effects in the Reactions of Atomic Ions with H2, D2, and HD , 1992 .

[11]  G. Parlant,et al.  Capture cross sections on adiabatic vibronic potential curves—The reaction of Ar+(2PJ)+H2 , 1991 .

[12]  D. Neuhauser,et al.  Theoretical and experimental total state-selected and state-to-state cross sections. III, The (Ar+H2)+ system , 1990 .

[13]  M. Baer,et al.  Experimental and theoretical total state-selected and state-to-state absolute cross sections. II, The Ar+(2P3/2,1/2)+H2 reaction , 1990 .

[14]  M. Baer,et al.  Experimental and theoretical total state-selected and state-to-state absolute cross sections. II. The Ar sup + ( sup 2 P sub 3/2,1/2 )+H sub 2 reaction , 1990 .

[15]  J. Muckerman,et al.  On the use of grid methods for the solution of reactive scattering problems in hyperspherical coordinates , 1990 .

[16]  J. Muckerman,et al.  A classical path approach to reactive scattering. II. Apparatus for three‐dimensional applications , 1989 .

[17]  O. Dutuit,et al.  State‐selected ion–molecule reactions: N+2(v)+H2→N2+H+2 and Ar+(2PJ) +H2→Ar+H+2 , 1988 .

[18]  J. Muckerman,et al.  A classical path approach to reactive scattering. I. Use of hyperspherical coordinates , 1988 .

[19]  G. Parlant,et al.  A new mechanism for providing stable molecular products in high energy reactions , 1987 .

[20]  P. Armentrout,et al.  Translational energy dependence of Ar++XY→ArX++Y (XY=H2,D2,HD) from thermal to 30 eV c.m. , 1985 .

[21]  G. D. Billing The semiclassical treatment of molecular roto/vibrational energy transfer , 1984 .

[22]  B. R. Johnson The quantum dynamics of three particles in hyperspherical coordinates , 1983 .

[23]  B. R. Johnson The classical dynamics of three particles in hyperspherical coordinates , 1983 .

[24]  A. Depristo A test of the semiclassical energy conserving trajectory technique for low energy electron transfer reactions , 1983 .

[25]  J. Durup,et al.  State selected ion–molecule reactions by a TESICO technique. II. Separation of the reactant spin–orbit states in the reaction Ar+(2P3/2, 2P1/2)+H2(D2)→ArH+(ArD+)+H(D) , 1981 .

[26]  B. R. Johnson On hyperspherical coordinates and mapping the internal configurations of a three body system , 1980 .

[27]  J. Durup,et al.  Direct determination of individual reaction cross sections for the two spin‐orbit states Ar+(2P3/2, 2P1/2) , 1980 .

[28]  P. Hierl Orientation isotope effect in ion–molecule reactions , 1977 .

[29]  J. Futrell,et al.  Ion-molecule reactions in H2/rare-gas systems by ion cyclotron resonance II. Reactions in systems of H2 with Ar, Kr and Xe , 1976 .

[30]  D. Micha,et al.  Collision dynamics of three interacting atoms: Stripping reactions of Ar++H2 and of K+I2 , 1976 .

[31]  K. J. McCann,et al.  New semiclassical treatments of rotational and vibrational transitions in heavy‐particle collisions. I. H–H2 and He–H2 collisions , 1975 .

[32]  D. Gerlich,et al.  Integral cross sections for ion—molecule reactions. I. The guided beam technique , 1974 .

[33]  J. Tully Diatomics‐in‐molecules potential energy surfaces. II. Nonadiabatic and spin‐orbit interactions , 1973 .

[34]  A. C. Roach,et al.  Ion-molecule reactions of the rare gases with hydrogen. Part 1.—Diatomics-in-molecules potential energy surface for ArH+2 , 1972 .

[35]  T. George,et al.  Kinematic Model for Reaction. III. Detailed Dynamics of the Reaction of Ar+ with D2 , 1971 .

[36]  T. George,et al.  Kinematic Model for Reaction. IV. Orientation and Isotope Effect in the Ar++HD Reaction , 1971 .

[37]  E. Gislason,et al.  Dynamics of the Reaction of Ar+ with D2 , 1970 .

[38]  P. Hierl,et al.  Chemical Accelerator Studies of Isotope Effects on Collision Dynamics of Ion–Molecule Reactions: Elaboration of a Model for Direct Reactions , 1970 .

[39]  W. S. Koski,et al.  Isotope Effect in the Reaction of HD+with Rare Gases , 1967 .

[40]  A. Henglein,et al.  On the Collision Mechanism of Bimolecular Reactions. IV. Intramolecular Isotope and Stripping Effects in the Reactions of Ar+ and of N2+ Ions with HD , 1965 .

[41]  L. Friedman,et al.  INTRAMOLECULAR ISOTOPE EFFECTS IN THE HD-RARE GAS ION-MOLECULE REACTIONS , 1964 .

[42]  W. Maier,et al.  Energy Dependence of Cross Sections for Ion—Molecule Reactions. Transfer of Hydrogen Atoms and Hydrogen Ions , 1963 .