A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite

This paper presents an indicator-based multi-objective local search (IBMOLS) to solve a multi-objective optimization problem. The problem concerns the selection and scheduling of observations for an agile Earth observing satellite. The mission of an Earth observing satellite is to obtain photographs of the Earth surface to satisfy user requirements. Requests from several users have to be managed before transmitting an order, which is a sequence of selected acquisitions, to the satellite. The obtained sequence has to optimize two objectives under operation constraints. The objectives are to maximize the total profit of the selected acquisitions and simultaneously to ensure the fairness of resource sharing by minimizing the maximum profit difference between users. Experiments are conducted on realistic instances. Hypervolumes of the approximate Pareto fronts are computed and the results from IBMOLS are compared with the results from the biased random-key genetic algorithm (BRKGA).

[1]  Nicolas Jozefowiez,et al.  Multi-objective Optimization for Selecting and Scheduling Observations by Agile Earth Observing Satellites , 2012, PPSN.

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Gilbert Laporte,et al.  A unified tabu search heuristic for vehicle routing problems with time windows , 2001, J. Oper. Res. Soc..

[4]  Edmund K. Burke,et al.  Indicator-based multi-objective local search , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[6]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[7]  Nicolas Jozefowiez,et al.  Biased random key genetic algorithm with hybrid decoding for multi-objective optimization , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[8]  Cédric Pralet,et al.  Time-dependent Simple Temporal Networks: Properties and Algorithms , 2013, RAIRO Oper. Res..

[9]  Maged M. Dessouky,et al.  A genetic algorithm approach for solving the daily photograph selection problem of the SPOT5 satellite , 2010, Comput. Ind. Eng..

[10]  M. Lemaître,et al.  Sharing the use of Earth observation satellites , 2002 .

[11]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[12]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[13]  Djamal Habet,et al.  Bounding the optimum for the problem of scheduling the photographs of an Agile Earth Observing Satellite , 2010, Comput. Optim. Appl..

[14]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[15]  Gilbert Laporte,et al.  A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites , 2007, Eur. J. Oper. Res..

[16]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Minqiang Xu,et al.  Scheduling Observations of Agile Satellites with Combined Genetic Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[18]  Daniel Vanderpooten,et al.  Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite , 2002, Eur. J. Oper. Res..

[19]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..

[20]  Gérard Verfaillie,et al.  Exploiting a Common Property Resource under a Fairness Constraint: a Case Study , 1999, IJCAI.

[21]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[22]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[23]  Gérard Verfaillie,et al.  How to Manage the New Generation of Agile Earth Observation Satellites , 2007 .

[24]  Gérard Verfaillie,et al.  Selecting and scheduling observations of agile satellites , 2002 .

[25]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[26]  Jun Wang,et al.  A multi-objective imaging scheduling approach for earth observing satellites , 2007, GECCO '07.

[27]  Gilbert Laporte,et al.  Maximizing the value of an Earth observation satellite orbit , 2005, J. Oper. Res. Soc..

[28]  N. Bataille EFFICIENCY AND FAIRNESS WHEN SHARING THE USE OF A SATELLITE , 2006 .

[29]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[30]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[31]  José Fernando Gonçalves,et al.  A Hybrid Genetic Algorithm for Assembly Line Balancing , 2002, J. Heuristics.