Disturbance of neural respiratory control in neonatal mice lacking gaba synthesizing enzyme 67-kda isoform of glutamic acid decarboxylase

[1]  Ikuo Homma,et al.  Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats , 1990, Pflügers Archiv.

[2]  F. Eldridge,et al.  Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats. , 2002, Journal of applied physiology.

[3]  W. Zhang,et al.  Differential ontogeny of GABABreceptor‐mediated pre‐ and postsynaptic modulation of GABA and glycine transmission in respiratory rhythm‐generating network in mouse , 2002, The Journal of physiology.

[4]  I. Homma,et al.  Development of the rat respiratory neuron network during the late fetal period , 2002, Neuroscience Research.

[5]  K. M. Spyer,et al.  Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models , 2001, Trends in Neurosciences.

[6]  A. N. van den Pol,et al.  GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. , 2001, Journal of neurophysiology.

[7]  Hiroshi Nishimaru,et al.  Formation of the central pattern generator for locomotion in the rat and mouse , 2000, Brain Research Bulletin.

[8]  A. Haji,et al.  Immunoreactivity for glutamic acid decarboxylase and N-methyl-d-aspartate receptors of intracellularly labeled respiratory neurons in the cat , 2000, Neuroscience Letters.

[9]  W. Zhang,et al.  Early postnatal maturation of GABAA‐mediated inhibition in the brainstem respiratory rhythm‐generating network of the mouse , 2000, The European journal of neuroscience.

[10]  I. Seif,et al.  Abnormal Phrenic Motoneuron Activity and Morphology in Neonatal Monoamine Oxidase A-Deficient Transgenic Mice: Possible Role of a Serotonin Excess , 2000, The Journal of Neuroscience.

[11]  D. Richter,et al.  Respiratory Rhythm Generation: Plasticity of a Neuronal Network , 2000 .

[12]  A. Haji,et al.  Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. , 2000, Pharmacology & therapeutics.

[13]  K. Obata,et al.  Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65 , 2000, Brain Research.

[14]  J. Champagnat,et al.  NMDA Receptor Activity In Utero Averts Respiratory Depression and Anomalous Long-Term Depression in Newborn Mice , 2000, The Journal of Neuroscience.

[15]  A. Pol,et al.  GABA release from mouse axonal growth cones , 2000, The Journal of physiology.

[16]  S. Korsmeyer,et al.  Rnx deficiency results in congenital central hypoventilation , 2000, Nature Genetics.

[17]  J. Paton,et al.  Reorganisation of respiratory network activity after loss of glycinergic inhibition , 2000, Pflügers Archiv.

[18]  J. Champagnat,et al.  Segmental specification of GABAergic inhibition during development of hindbrain neural networks , 1999, Nature Neuroscience.

[19]  B. Duron,et al.  Maturation of the mammalian respiratory system. , 1999, Physiological reviews.

[20]  K. Obata,et al.  GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase , 1999, Neuroscience Research.

[21]  Y. Yajima,et al.  Ambiguous respiratory neurons are modulated by GABAA receptor-mediated inhibition , 1999, Neuroscience.

[22]  J. Cazalets,et al.  Presynaptic GABAergic control of the locomotor drive in the isolated spinal cord of neonatal rats , 1999, The European journal of neuroscience.

[23]  K. Ballanyi,et al.  Synaptic inhibition in the isolated respiratory network of neonatal rats , 1998, The European journal of neuroscience.

[24]  Y. Okada,et al.  Effects of extracellular calcium and magnesium on central respiratory control in the brainstem–spinal cord of neonatal rat , 1998, Brain Research.

[25]  P. Scheid,et al.  Role of the pons in hypoxic respiratory depression in the neonatal rat. , 1998, Respiration physiology.

[26]  J. Feldman,et al.  PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. , 1998, Annual review of physiology.

[27]  X. Leinekugel,et al.  GABAA, NMDA and AMPA receptors: a developmentally regulated `ménage à trois' , 1997, Trends in Neurosciences.

[28]  M. Kumada,et al.  Determination of ventilatory volume in mice by whole body plethysmography. , 1997, The Japanese journal of physiology.

[29]  T. Yagi,et al.  Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Feldman,et al.  Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission. , 1997, Journal of neurophysiology.

[31]  K. Obata Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture. , 1997, Developmental neuroscience.

[32]  T. Yagi,et al.  Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. , 1996, Biochemical and biophysical research communications.

[33]  J. Champagnat,et al.  Reorganization of Pontine Rhythmogenic Neuronal Networks in Krox-20 Knockout Mice , 1996, Neuron.

[34]  M. Denavit-Saubié,et al.  Inhibitions mediated by glycine and GABAA receptors shape the discharge pattern of bulbar respiratory neurons , 1996, Brain Research.

[35]  F. Tell,et al.  Perinatal developmental changes in respiratory activity of medullary and spinal neurons: an in vitro study on fetal and newborn rats. , 1996, Brain research. Developmental brain research.

[36]  J. Remmers,et al.  Evidence that glycine and GABA mediate postsynaptic inhibition of bulbar respiratory neurons in the cat. , 1992, Journal of applied physiology.

[37]  J. C. Smith,et al.  Respiratory and locomotor patterns generated in the fetal rat brain stem-spinal cord in vitro. , 1992, Journal of neurophysiology.

[38]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[39]  M. Erlander,et al.  Two genes encode distinct glutamate decarboxylases , 1991, Neuron.

[40]  W. Blessing Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections , 1990, Neuroscience.

[41]  P. Berger,et al.  Precursor of respiratory pattern in the early gestation mammalian fetus , 1990, Brain Research.

[42]  J. C. Smith,et al.  Cellular Mechanisms Underlying Modulation of Breathing Pattern in Mammals a , 1989, Annals of the New York Academy of Sciences.

[43]  T. Murakoshi,et al.  Respiratory reflexes in an isolated brainstem-lung preparation of the newborn rat: Possible involvement of γ-aminobutyric acid and glycine , 1985, Neuroscience Letters.

[44]  G. Rondouin,et al.  Involvement of amino acids in periodic inhibitions of bulbar respiratory neurones , 1982, Brain Research.

[45]  M. Wilkinson,et al.  Development of patterns of respiratory activity in unanesthetized fetal sheep in utero. , 1981, Journal of applied physiology: respiratory, environmental and exercise physiology.

[46]  K. Obata,et al.  Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture , 1978, Brain Research.