pySOT and POAP: An event-driven asynchronous framework for surrogate optimization

This paper describes Plumbing for Optimization with Asynchronous Parallelism (POAP) and the Python Surrogate Optimization Toolbox (pySOT). POAP is an event-driven framework for building and combining asynchronous optimization strategies, designed for global optimization of expensive functions where concurrent function evaluations are useful. POAP consists of three components: a worker pool capable of function evaluations, strategies to propose evaluations or other actions, and a controller that mediates the interaction between the workers and strategies. pySOT is a collection of synchronous and asynchronous surrogate optimization strategies, implemented in the POAP framework. We support the stochastic RBF method by Regis and Shoemaker along with various extensions of this method, and a general surrogate optimization strategy that covers most Bayesian optimization methods. We have implemented many different surrogate models, experimental designs, acquisition functions, and a large set of test problems. We make an extensive comparison between synchronous and asynchronous parallelism and find that the advantage of asynchronous computation increases as the variance of the evaluation time or number of processors increases. We observe a close to linear speed-up with 4, 8, and 16 processors in both the synchronous and asynchronous setting.

[1]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[2]  Christine A. Shoemaker,et al.  SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems , 2013, Comput. Oper. Res..

[3]  Andrew Gordon Wilson,et al.  Scalable Log Determinants for Gaussian Process Kernel Learning , 2017, NIPS.

[4]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[5]  M. Eldred,et al.  Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .

[6]  Juliane Müller,et al.  MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems , 2014, 1404.4261.

[7]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[8]  Warren B. Powell,et al.  A Knowledge-Gradient Policy for Sequential Information Collection , 2008, SIAM J. Control. Optim..

[9]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[13]  Alberto Costa,et al.  RBFOpt: an open-source library for black-box optimization with costly function evaluations , 2018, Mathematical Programming Computation.

[14]  Matthias Poloczek,et al.  Bayesian Optimization with Gradients , 2017, NIPS.

[15]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[16]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[17]  J. Friedman Multivariate adaptive regression splines , 1990 .

[18]  Todd D. Plantenga,et al.  HOPSPACK 2.0 user manual. , 2009 .

[19]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[20]  Taimoor Akhtar,et al.  SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems , 2016, J. Glob. Optim..

[21]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[22]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[23]  Ruben Martinez-Cantin,et al.  BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits , 2014, J. Mach. Learn. Res..

[24]  C. Shoemaker,et al.  Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization , 2013 .

[25]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[26]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[27]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[28]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[29]  Christine A. Shoemaker,et al.  Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems , 2014, J. Glob. Optim..

[30]  Marc Parizeau,et al.  Once you SCOOP, no need to fork , 2014, XSEDE '14.

[31]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[32]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[33]  Christine A. Shoemaker,et al.  Parallel Stochastic Global Optimization Using Radial Basis Functions , 2009, INFORMS J. Comput..

[34]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[35]  Christine A. Shoemaker,et al.  Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms , 2011, SIAM J. Optim..

[36]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[37]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[38]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[39]  Peter I. Frazier,et al.  The Parallel Knowledge Gradient Method for Batch Bayesian Optimization , 2016, NIPS.

[40]  Robert Piché,et al.  Mixture surrogate models based on Dempster-Shafer theory for global optimization problems , 2011, J. Glob. Optim..