Experimental Analyses of the Life Span Method for the Maximum Stable Set Problem

An e cient algorithm for the approximate solution of the maximum cardinality stable set problem is presented. The algorithm is based on a variant of tabu search which we call the life span method. Numerical experiments on random and benchmark instances show that our algorithm dominates all the algorithms given in the literature both in accuracy of solutions and in speed. We also investigate how to tune up our implementation and to optimize the parameters via extensive numerical experiments.

[1]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[2]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[3]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[4]  Michel Gendreau,et al.  Solving the maximum clique problem using a tabu search approach , 1993, Ann. Oper. Res..

[5]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[7]  K. Corrádi,et al.  A combinatorial approach for Keller's conjecture , 1990 .

[8]  P. Sadayappan,et al.  Optimization by neural networks , 1988, IEEE 1988 International Conference on Neural Networks.

[9]  Mauricio G. C. Resende,et al.  A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set , 1994, Oper. Res..

[10]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .

[11]  N. E. Collins,et al.  Simulated annealing - an annotated bibliography , 1988 .

[12]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[13]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[14]  Sanjeev Arora,et al.  Probabilistic checking of proofs; a new characterization of NP , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[15]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[16]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[17]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[18]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[19]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .