Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La0.5Sr0.5BO2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

[1]  B. Johansson,et al.  Optimization of ionic conductivity in doped ceria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[3]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[4]  Meilin Liu,et al.  Oxygen reduction on LaMnO3-Based cathode materials in solid oxide fuel cells , 2007 .

[5]  M. Islam,et al.  Computer modelling of defects and transport in perovskite oxides , 2002 .

[6]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[7]  R. Evarestov,et al.  Ab initio calculations of the LaMnO3 surface properties , 2004 .

[8]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[9]  F. Shimojo,et al.  Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion , 1992 .

[10]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[11]  A. Shluger,et al.  Lattice relaxation and charge-transfer optical transitions due to self-trapped holes in nonstoichiometric LaMnO3 crystal , 2001, cond-mat/0108207.

[12]  Yong Jiang,et al.  Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. , 2005, The Journal of chemical physics.

[13]  R. Evarestov,et al.  Comparative density-functional LCAO and plane-wave calculations of LaMnO3 surfaces , 2005 .

[14]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[15]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[16]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[17]  C. Fisher,et al.  Disproportionation, dopant incorporation, and defect clustering in Perovskite-structured NdCoO3. , 2006, The journal of physical chemistry. B.

[18]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[19]  Meilin Liu,et al.  Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell , 2007 .

[20]  J. Maier,et al.  Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces , 2009 .

[21]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[22]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[23]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[24]  R. Evarestov,et al.  Ab initio Hartree-Fock calculations of LaMnO3 (110) surfaces , 2003 .

[25]  J. Maier,et al.  Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics. , 2008, Physical chemistry chemical physics : PCCP.

[26]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .

[27]  M. Islam Ionic transport in ABO3 perovskite oxides: a computer modelling tour , 2000 .

[28]  Meilin Liu,et al.  Computational study on the catalytic mechanism of oxygen reduction on La(0.5)Sr(0.5)MnO(3) in solid oxide fuel cells. , 2007, Angewandte Chemie.

[29]  H. Anderson,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure , 1989 .

[30]  H. Fjellvåg,et al.  Ground-state and excited-state properties of LaMnO3 from full-potential calculations , 2002 .

[31]  J. Maier On the correlation of macroscopic and microscopic rate constants in solid state chemistry , 1998 .

[32]  Meilin Liu,et al.  Novel Cathodes for Low‐Temperature Solid Oxide Fuel Cells , 2002 .

[33]  M. Islam,et al.  Oxygen Ion Migration in Perovskite-Type Oxides , 1995 .

[34]  R. A. Souza A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. , 2006 .

[35]  Fritz B. Prinz,et al.  Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique , 2007 .

[36]  Meilin Liu,et al.  Prediction of O2 Dissociation Kinetics on LaMnO3-Based Cathode Materials for Solid Oxide Fuel Cells , 2009 .

[37]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[38]  Fritz B. Prinz,et al.  Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles , 2005 .

[39]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .