Failure Analysis of a Drilling Wire Rope

The failure of a multistrand wire rope used in drilling rig hook is investigated in this case study. The wire rope failed during the raising of the rig and caused some serious damage to the rig structure. Throughout its short time of service, the wire had been used a few times for rig up and rig down. The failure investigation is performed by metallurgical examinations and computational analyses utilizing the finite element method. The wire rope was made of AISI 1095 steel. Its chemical composition, ferrite–pearlite structure, and high hardness indicate that the wire is a type of extra extra improved plow steel (EEIPS) grade. The morphologies of fractured surfaces indicate tensile overloading of wires. Finite element analysis confirms the overload in core and strands, and compressive contact stresses between wires, and between wires and sheave surface. The results show that high tensile stresses due to the overload and small ratio of sheave-to-rope diameter were responsible for the failure.