Application of Gauss quadrature rule in finding bounds for solution of linear systems of equations
暂无分享,去创建一个
[1] Esmail Babolian,et al. On numerical integration methods with T-distribution weight function , 2006, Appl. Math. Comput..
[2] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[3] H. Wilf. Mathematics for the Physical Sciences , 1976 .
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[6] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[7] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[8] Gene H. Golub,et al. Scientific computing , 1993 .
[9] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[10] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[11] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[12] G. Golub,et al. Quadratically constrained least squares and quadratic problems , 1991 .
[13] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[14] J. Miller. Numerical Analysis , 1966, Nature.
[15] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[16] M. Rayner,et al. Mathematics for the Physical Sciences , 1969 .