Supramolecular host-guest interaction for labeling and detection of cellular biomarkers.

Be my guest: A supramolecular host-guest interaction is utilized for highly efficient bioorthogonal labeling of cellular targets. Antibodies labeled with a cyclodextrin host molecule bind to adamantane-labeled magnetofluorescent nanoparticles (see picture) and provide an amplifiable strategy for biomarker detection that can be adapted to different diagnostic techniques such as molecular profiling or magnetic cell sorting.

[1]  Jurriaan Huskens,et al.  Probing multivalent interactions in a synthetic host-guest complex by dynamic force spectroscopy. , 2011, Journal of the American Chemical Society.

[2]  M. Natan,et al.  Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. , 2008, Journal of the American Chemical Society.

[3]  Carolyn R Bertozzi,et al.  Programmed assembly of 3-dimensional microtissues with defined cellular connectivity , 2009, Proceedings of the National Academy of Sciences.

[4]  Hakho Lee,et al.  Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. , 2010, Nature nanotechnology.

[5]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[6]  J. F. Stoddart,et al.  Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. , 2010, Journal of the American Chemical Society.

[7]  J. Karp,et al.  Chemistry and material science at the cell surface. , 2010, Materials today.

[8]  Jurriaan Huskens,et al.  Nanometer arrays of functional light harvesting antenna complexes by nanoimprint lithography and host-guest interactions. , 2008, Journal of the American Chemical Society.

[9]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[10]  J. F. Stoddart,et al.  pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. , 2010, Journal of the American Chemical Society.

[11]  Hakho Lee,et al.  Rapid detection and profiling of cancer cells in fine-needle aspirates , 2009, Proceedings of the National Academy of Sciences.

[12]  Kimoon Kim,et al.  Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair. , 2007, Journal of the American Chemical Society.

[13]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[14]  Debjit Dutta,et al.  Synthetic chemoselective rewiring of cell surfaces: generation of three-dimensional tissue structures. , 2011, Journal of the American Chemical Society.

[15]  Thomas Schneider,et al.  Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. , 2010, Angewandte Chemie.

[16]  S. Ryu,et al.  Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. , 2011, Nature chemistry.

[17]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[18]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[19]  Seungpyo Hong,et al.  The Binding Avidity of a Nanoparticle-based Multivalent Targeted Drug Delivery Platform , 2022 .

[20]  R. Rossin,et al.  SYNFORM ISSUE 2010/9 , 2010, Angewandte Chemie.

[21]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[22]  Donhee Ham,et al.  Chip–NMR biosensor for detection and molecular analysis of cells , 2008, Nature Medicine.

[23]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[24]  W. Nau,et al.  Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes , 2007, Nature Methods.

[25]  E. Muñoz,et al.  Probing the relevance of lectin clustering for the reliable evaluation of multivalent carbohydrate recognition. , 2009, Journal of the American Chemical Society.

[26]  Hakho Lee,et al.  Micro-NMR for Rapid Molecular Analysis of Human Tumor Samples , 2011, Science Translational Medicine.

[27]  Chulhee Kim,et al.  Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. , 2009, Journal of the American Chemical Society.

[28]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[29]  Luc Brunsveld,et al.  Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.

[30]  Sarit S. Agasti,et al.  Recognition-Mediated Activation of Therapeutic Gold Nanoparticles Inside Living Cells , 2010, Nature chemistry.

[31]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[32]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[33]  Lyle Isaacs,et al.  Die Cucurbit[n]uril‐Familie , 2005 .

[34]  R. Weissleder,et al.  Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles , 2006, Nature Protocols.

[35]  D. Reinhoudt,et al.  Divalent binding of a bis(adamantyl)-functionalized calix[4]arene to beta-cyclodextrin-based hosts: an experimental and theoretical study on multivalent binding in solution and at self-assembled monolayers. , 2004, Journal of the American Chemical Society.

[36]  Ralph Weissleder,et al.  Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. , 2010, Bioconjugate chemistry.

[37]  Daisuke Sato,et al.  Surface plasmon resonance study on binding interactions of multivalent cyclophane hosts with immobilized guests , 2010 .

[38]  Thomas Kelly,et al.  In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. , 2009, Nature nanotechnology.