Cardiac troponin T is essential in sarcomere assembly and cardiac contractility

[1]  P. Elliott,et al.  Hypertrophic Cardiomyopathy: Histopathological Features of Sudden Death in Cardiac Troponin T Disease , 2001, Circulation.

[2]  J. Seidman,et al.  The Genetic Basis for Cardiomyopathy from Mutation Identification to Mechanistic Paradigms , 2001, Cell.

[3]  L. Maquat,et al.  Quality Control of mRNA Function , 2001, Cell.

[4]  S. Solomon,et al.  Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. , 2001, The New England journal of medicine.

[5]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[6]  S. Horne,et al.  Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. , 1999, Developmental biology.

[7]  T. Hewett,et al.  Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. , 1999, The Journal of clinical investigation.

[8]  C. Amemiya,et al.  Zebrafish YAC, BAC, and PAC genomic libraries. , 1999, Methods in cell biology.

[9]  J. Nicklas,et al.  Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. , 1998, Mutation research.

[10]  T. Hewett,et al.  A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. , 1998, The Journal of clinical investigation.

[11]  D. Stainier,et al.  Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. , 1998, Developmental genetics.

[12]  H. Watkins,et al.  Sudden death due to troponin T mutations. , 1997, Journal of the American College of Cardiology.

[13]  C. Nüsslein-Volhard,et al.  Mutations affecting the cardiovascular system and other internal organs in zebrafish. , 1996, Development.

[14]  A. Schier,et al.  Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. , 1996, Development.

[15]  F O Mueller,et al.  Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. , 1996, JAMA.

[16]  L. Tobacman,et al.  Thin filament-mediated regulation of cardiac contraction. , 1996, Annual review of physiology.

[17]  Christine E. Seidman,et al.  α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere , 1994, Cell.

[18]  E. Olson,et al.  Helix-loop-helix proteins as regulators of muscle-specific transcription. , 1993, The Journal of biological chemistry.

[19]  A. E. Oakeley,et al.  A cardiac troponin T epitope conserved across phyla. , 1992, The Journal of biological chemistry.

[20]  W. Burggren,et al.  Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. , 1991, Annual review of physiology.

[21]  C. Fyrberg,et al.  Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. , 1990, Journal of molecular biology.

[22]  W. Gilbert,et al.  One-sided polymerase chain reaction: the amplification of cDNA. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Lin,et al.  Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application. , 1985, Hybridoma.

[24]  D. Fischman,et al.  Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro , 1982, The Journal of cell biology.