Parallel gcd and Lattice Basis Reduction

Gcd and lattice reduction are two major problems in the field of Parallel Algebraic Computations. To know if they are in NC is still an open question. We point out their correlations and difficulties. Concerning the lattice basis reduction which is of sequential cost O(n7), we propose a parallelization leading to the time bound O(n3 log2n) for the reduction of good lattices. Experimentations show that high speed-ups can be obtained.

[1]  Jacques Stern,et al.  Cryptanalysis of a Public-Key Cryptosystem Based on Approximations by Rational Numbers , 1991, EUROCRYPT.

[2]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[3]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.

[4]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[5]  Y. Saad,et al.  Gaussian elimination on hypercubes , 1986 .

[6]  George E. Collins The Computing Time of the Euclidean Algorithm , 1974, SIAM J. Comput..

[7]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[8]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[9]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[10]  J. Stein Computational problems associated with Racah algebra , 1967 .

[11]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[12]  Gilles Villard,et al.  Parallel lattice basis reduction , 1992, ISSAC '92.

[13]  Yves Robert,et al.  Data Allocation Strategies for the Gauss and Jordan Algorithms on a Ring of Processors , 1989, Inf. Process. Lett..

[14]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1986, STACS.

[15]  Gilles Villard,et al.  Cost Prediction for Load Balancing: Application to Algebraic Computations , 1992, CONPAR.

[16]  László Lovász,et al.  Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers , 1984, STOC '84.

[17]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[18]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[19]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Gilles Villard,et al.  Computer algebra on MIMD machine , 1988, SIGS.

[21]  Valtteri Niemi,et al.  A New Trapdoor in Knapsacks , 1991, EUROCRYPT.

[22]  Stephen A. Cook,et al.  The Classifikation of Problems which have Fast Parallel Algorithms , 1983, FCT.

[23]  Erich Kaltofen,et al.  On the complexity of finding short vectors in integer lattices , 1983, EUROCAL.

[24]  Gilles Villard,et al.  PAC: first experiments on a 128 transputers méganode , 1991, ISSAC '91.

[25]  Gary L. Miller,et al.  Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers , 1984, SIAM J. Comput..

[26]  John N. Tsitsiklis,et al.  On Stochastic Scheduling with In-Tree Precedence Constraints , 1987, SIAM J. Comput..

[27]  Michel Cosnard,et al.  Gaussian Elimination on Message Passing Architecture , 1987, ICS.

[28]  Claus-Peter Schnorr,et al.  Factoring Integers and Computing Discrete Logarithms via Diophantine Approximations , 1991, EUROCRYPT.

[29]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).