A Comprehensive View on Urban Spatial Structure: Urban Density Patterns of German City Regions

Urban density must be considered a key concept in the description of a city’s urban spatial structure. Countless studies have provided evidence of a close relationship between built density and activity densities, on the one hand, and urban environmental conditions or social practices, on the other hand. However, despite the concept’s common use in urban research, urban density is a rather fuzzy and highly complex concept that is accompanied by a confusing variety of indicators and measurement approaches. To date, an internationally-accepted standard for the implementation of density indicators that permits a robust comparison of different countries, regions or cities is widely missing. This paper discusses the analytical opportunities that recent remote sensing data offer in regard to an objective and transparent measurement of built density patterns of city regions. It furthermore clarifies the interrelations between built and activity densities. We apply our approach to four German city regions to demonstrate the analytical capacity of spatially-refined density indicators for the purposes of comparative urban research at a regional scale. In so doing, we contribute to a more encompassing and robust understanding of the urban density concept when analyzing regional morphology.

[1]  R. Ewing,et al.  The impact of urban form on U.S. residential energy use , 2008 .

[2]  Denise Pumain,et al.  Built-Up Encroachment and the Urban Field: A Comparison of Forty European Cities , 2008 .

[3]  H. Hirschmüller Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Hannes Taubenböck,et al.  Investigating the Applicability of Cartosat-1 DEMs and Topographic Maps to Localize Large-Area Urban Mass Concentrations , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[5]  Kayvan Karimi,et al.  Retrofitting Suburbia: Urban Design Solutions for Redesigning Suburbs , 2013 .

[6]  Michael Wurm,et al.  Die bauliche Dichte der Stadtregion - Erzeugung kleinräumiger Dichtedaten mit fernerkundlichen Mitteln , 2014 .

[7]  R. Ewing,et al.  Relationship between urban sprawl and physical activity, obesity, and morbidity - update and refinement. , 2014, Health & place.

[8]  L. Bettencourt,et al.  A unified theory of urban living , 2010, Nature.

[9]  Jason Barr,et al.  The Floor Area Ratio Gradient: New York City, 1890-2007 , 2014 .

[10]  Reid Ewing,et al.  Compactness versus Sprawl , 2015 .

[11]  Miquel-Àngel Garcia-López,et al.  The Polycentric Knowledge Economy in Barcelona , 2010 .

[12]  Pierre Filion,et al.  Suburban Inertia: The Entrenchment of Dispersed Suburbanism , 2015 .

[13]  Hannes Taubenböck,et al.  At the edge of the city center , 2015, 2015 Joint Urban Remote Sensing Event (JURSE).

[14]  R. Burchell,et al.  Conventional development versus managed growth: the costs of sprawl. , 2003, American journal of public health.

[15]  B. Roberts Changes in Urban Density: Its Implications on the Sustainable Development of Australian Cities , 2007 .

[16]  Marc Schlossberg,et al.  Is Sprawl Unhealthy? , 2004 .

[17]  Maria Kolokotroni,et al.  Increased Temperature and Intensification of the Urban Heat Island: Implications for Human Comfort and Urban Design , 2007 .

[18]  Stefan Siedentop,et al.  Who Sprawls Most? Exploring the Patterns of Urban Growth across 26 European Countries , 2012 .

[19]  David W. S. Wong The Modifiable Areal Unit Problem (MAUP) , 2004 .

[20]  Daniel J. Graham,et al.  Agglomeration, accessibility and productivity: Evidence for large metropolitan areas in the US , 2017 .

[21]  Jane Dixon,et al.  CHANGING THE OBESOGENIC ENVIRONMENT: INSIGHTS FROM A CULTURAL ECONOMY OF CAR RELIANCE , 2005 .

[22]  T. Scholz,et al.  Geocoding of German administrative data: the case of the Institute for Employment Research , 2012 .

[23]  D. Brownstone,et al.  The Impact of Residential Density on Vehicle Usage and Energy Consumption , 2005 .

[24]  Markus Schlapfer,et al.  Urban Skylines: building heights and shapes as measures of city size , 2015, 1512.00946.

[25]  Timothy F. Harris,et al.  Productivity and Metropolitan Density , 2000 .

[26]  Peter Reinartz,et al.  Towards Automated DEM Generation from High Resolution Stereo Satellite Images , 2008 .

[27]  Angelika Krehl,et al.  Polyzentralität in deutschen Stadtregionen – eine integrierte Bestandsaufnahme , 2015 .

[28]  Michael Wurm,et al.  Dichter dran! Neue Möglichkeiten der Vernetzung von Geobasis-, Statistik- und Erdbeobachtungsdaten zur räumlichen Analyse und Visualisierung von Stadtstrukturen mit Dichteoberflächen und -profilen , 2014 .

[29]  Shlomo Angel,et al.  “Making Room for a Planet of Cities” , 2011 .

[30]  Georg Schiller,et al.  Infrastrukturfolgekosten der Siedlungsentwicklung unter Schrumpfungsbedingungen , 2005 .

[31]  R. Patel,et al.  Urbanization--an emerging humanitarian disaster. , 2009, The New England journal of medicine.

[32]  Hannes Taubenböck,et al.  disP Service , 2015 .

[33]  W. Stefanov,et al.  Neighborhood microclimates and vulnerability to heat stress. , 2006, Social science & medicine.

[34]  Gilles Duranton,et al.  From Sectoral to Functional Urban Specialization , 2001 .

[35]  Angelika Krehl,et al.  Urban spatial structure: an interaction between employment and built-up volumes , 2015 .

[36]  Jeffrey Kenworthy,et al.  Gasoline Consumption and Cities: A Comparison of U.S. Cities with a Global Survey , 1989 .

[37]  Nikolai Roskamm Dichte: Eine transdisziplinäre Dekonstruktion. Diskurse zu Stadt und Raum , 2011 .

[38]  Julie Le Gallo,et al.  Changes in Spatial and Sectoral Patterns of Employment in Ile-de-France, 1978-97 , 2006 .

[39]  S. Angel,et al.  The productivity of American cities: How densification, relocation, and greater mobility sustain the productive advantage of larger U.S. metropolitan labor markets , 2016 .

[40]  Junichi Susakia,et al.  Urban density mapping of global megacities from polarimetric SAR images , 2014 .

[41]  Philipp Rode,et al.  Cities and Energy: Urban Morphology and Residential Heat-Energy Demand , 2014 .

[42]  T. Moss 'Cold spots' of Urban Infrastructure: 'Shrinking' Processes in Eastern Germany and the Modern Infrastructural Ideal , 2008 .

[43]  J. M. Oakes,et al.  Does Residential Density Increase Walking and Other Physical Activity? , 2007 .

[44]  Colin McFarlane,et al.  The geographies of urban density , 2016 .

[45]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[46]  Oms. Regional Office for Europe,et al.  Heat-waves: risks and responses , 2004 .

[47]  Hannes Taubenböck,et al.  The spatial network of megaregions - Types of connectivity between cities based on settlement patterns derived from EO-data , 2015, Comput. Environ. Urban Syst..

[48]  R. Hall,et al.  Productivity and the Density of Economic Activity , 1993 .

[49]  Manfred Ehlers,et al.  Region-based automatic building and forest change detection on Cartosat-1 stereo imagery , 2013 .

[50]  Thomas Esch,et al.  Object-based image information fusion using multisensor earth observation data over urban areas , 2011 .

[51]  Arza Churchman,et al.  Disentangling the Concept of Density , 1999 .

[52]  D. Helbing,et al.  Growth, innovation, scaling, and the pace of life in cities , 2007, Proceedings of the National Academy of Sciences.

[53]  Harry W. Richardson,et al.  GASOLINE CONSUMPTION AND CITIES: A REPLY , 1989 .

[54]  Forbes Davidson,et al.  Density in Urban Development , 2006 .

[55]  Gabriel M. Ahlfeldt,et al.  If Alonso Was Right: Modeling Accessibility and Explaining the Residential Land Gradient , 2011 .

[56]  Reid Ewing,et al.  Travel and the Built Environment , 2010 .