Topological plasmonically induced transparency in a graphene waveguide system

[1]  N. Talebi,et al.  Unidirectional Wave Propagation in a Topological Plasmonic Ring Resonator via a Symmetry-Broken Excitation Scheme , 2023, ACS Applied Nano Materials.

[2]  Haofei Shi,et al.  Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval , 2020, Laser & Photonics Reviews.

[3]  M. Soljačić,et al.  Observation of topologically enabled unidirectional guided resonances , 2020, Nature.

[4]  S. Xiao,et al.  Robust and Broadband Optical Coupling by Topological Waveguide Arrays , 2020, Laser & Photonics Reviews.

[5]  V. Perebeinos,et al.  Multilayer Graphene Terahertz Plasmonic Structures for Enhanced Frequency Tuning Range , 2019 .

[6]  Lan Yang,et al.  Electromagnetically induced transparency at a chiral exceptional point , 2019, Nature Physics.

[7]  G. Weick,et al.  Topological plasmons in dimerized chains of nanoparticles: robustness against long-range quasistatic interactions and retardation effects , 2018, The European Physical Journal B.

[8]  Tien-Chang Lu,et al.  High-Performance Plasmonic Nanolasers with a Nanotrench Defect Cavity for Sensing Applications , 2018 .

[9]  Rongkuo Zhao,et al.  Electrically tunable slow light using graphene metamaterials , 2018 .

[10]  A. Alivisatos,et al.  Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency. , 2018, Nano letters.

[11]  Chang Liu,et al.  Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor , 2017, Scientific Reports.

[12]  W. Koopman,et al.  Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment , 2017, 1701.02907.

[13]  Valerio Pruneri,et al.  Double-layer graphene for enhanced tunable infrared plasmonics , 2017, Light: Science & Applications.

[14]  F. D. Abajo,et al.  Imaging and controlling plasmonic interference fields at buried interfaces , 2016, Nature Communications.

[15]  A. Kornyshev,et al.  Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces , 2016, Scientific Reports.

[16]  T. Ebbesen,et al.  Waveguide and Plasmonic Absorption-Induced Transparency. , 2016, ACS nano.

[17]  F. G. D. Abajo,et al.  Plasmon wave function of graphene nanoribbons , 2015 .

[18]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[19]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[20]  Franco Nori,et al.  What is and what is not electromagnetically induced transparency in whispering-gallery microcavities , 2014, Nature Communications.

[21]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[22]  P. Ajayan,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[23]  Boyang Xie,et al.  Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips , 2013 .

[24]  Takuo Tanaka,et al.  Plasmon hybridization in graphene metamaterials , 2013 .

[25]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[26]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[27]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[28]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[29]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[30]  G. Tulevski,et al.  Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. , 2010, ACS nano.

[31]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[32]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[33]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[34]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .