Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics.

Preceramic polymers (PCPs) are a group of specialty macromolecules that serve as precursors for generating inorganics, including ceramic carbides, nitrides, and borides. PCPs represent interesting synthetic challenges for chemists due to the elements incorporated into their structure. This group of polymers is also of interest to engineers as PCPs enable the processing of polymer-derived ceramic products including high-performance ceramic fibers and composites. These finished ceramic materials are of growing significance for applications that experience extreme operating environments (e.g., aerospace propulsion and high-speed atmospheric flight). This Review provides an overview of advances in the synthesis and postpolymerization modification of macromolecules forming nonoxide ceramics. These PCPs include polycarbosilanes, polysilanes, polysilazanes, and precursors for ultrahigh-temperature ceramics. Following our review of PCP synthetic chemistry, we provide examples of the application and processing of these polymers, including their use in fiber spinning, composite fabrication, and additive manufacturing. The principal objective of this Review is to provide a resource that bridges the disciplines of synthetic chemistry and ceramic engineering while providing both insights and inspiration for future collaborative work that will ultimately drive the PCP field forward.

[1]  S. Ramakrishnan,et al.  Influence of Thermal Treatment on Preceramic Polymer Grafted Nanoparticle Network Formation: Implications for Thermal Protection Systems and Aerospace Propulsion Components , 2022, ACS Applied Nano Materials.

[2]  Scott N. Schiffres,et al.  Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks , 2022, Materials Today.

[3]  Changyong Liu,et al.  Additive Manufacturing of Polymer-Derived Ceramics: Materials, Technologies, Properties and Potential Applications , 2022, Progress in Materials Science.

[4]  L. Rueschhoff,et al.  UV-Assisted Direct Ink Writing of Si3N4/SiC Preceramic Polymer Suspensions , 2022, Journal of the European Ceramic Society.

[5]  M. Dickerson,et al.  Impact of the Backbone Structure on the Rheological and Thermal Properties of Preceramic Polymer-Grafted Nanoparticles and Derived Ceramics , 2021, ACS Applied Nano Materials.

[6]  G. Wilks,et al.  Effect of pendant groups on the mass yield and density of polycarbosilanes during pyrolysis , 2021, Journal of the American Ceramic Society.

[7]  M. Ginebra,et al.  Rheological characterisation of ceramic inks for 3D direct ink writing: a review , 2021, Journal of the European Ceramic Society.

[8]  M. Meyers,et al.  Additive manufacturing of structural ceramics: a historical perspective , 2021 .

[9]  S. Kalidindi,et al.  Direct ink writing of ZrB2-SiC chopped fiber ceramic composites , 2021 .

[10]  A. Gurlo,et al.  Polymer derived ceramic aerogels , 2021 .

[11]  T. Hanemann,et al.  Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere , 2021, Polymers.

[12]  D. Fang,et al.  Progress and challenges towards additive manufacturing of SiC ceramic , 2021, Journal of Advanced Ceramics.

[13]  R. Machado,et al.  Flexible and Porous Nonwoven SiCN Ceramic Material via Electrospinning of an Optimized Silazane Solution , 2021, Advanced Engineering Materials.

[14]  Dipen K. Patel,et al.  Modeling the Pyrolysis of Preceramic Polymers: A Kinetic Study of the Polycarbosilane SMP-10 , 2021 .

[15]  D. Sciti,et al.  Insight into microstructure and flexural strength of ultra-high temperature ceramics enriched SICARBON™ composite , 2021 .

[16]  Maneesh K. Gupta,et al.  Biomorphic Ceramics: Synthesis and Characterization of Preceramic Polymer-Modified Melanin. , 2021, ACS biomaterials science & engineering.

[17]  M. Dickerson,et al.  Bioinspired cross-linking of preceramic polymers via metal ion coordination bonding , 2021 .

[18]  B. Pint,et al.  Oxidation of ultrahigh temperature ceramics: kinetics, mechanisms, and applications , 2021 .

[19]  K. Wegener,et al.  Direct laser additive manufacturing of high performance oxide ceramics: A state-of-the-art review , 2021 .

[20]  A. Pegoretti,et al.  Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage , 2021 .

[21]  G. Hasegawa Porous reduced ceramic monoliths derived from silicon- and titanium-based preceramic polymer gels , 2021, Journal of the Ceramic Society of Japan.

[22]  B. Ashrafi,et al.  A comparative study of nano-fillers to improve toughness and modulus of polymer-derived ceramics , 2021, Scientific Reports.

[23]  S. Bernard,et al.  Superparamagnetic Silicon Carbonitride Ceramic Fibers Through In Situ Generation of Iron Silicide Nanoparticles During Pyrolysis of an Iron-Modified Polysilazane. , 2021, ACS applied materials & interfaces.

[24]  Gurpreet Singh,et al.  High-Temperature Properties and Applications of Si-Based Polymer-Derived Ceramics: A Review , 2021, Materials.

[25]  Wufeng Chen,et al.  Rare-Earth-Catalyzed Selective Synthesis of Linear Hydridopolycarbosilanes and Their Functionalization , 2021 .

[26]  Y. Katoh,et al.  Additive manufacturing of silicon carbide for nuclear applications , 2021 .

[27]  P. Colombo,et al.  3D printing of polymer-derived SiOC with hierarchical and tunable porosity , 2020 .

[28]  Cheng-Hsiung Peng,et al.  Synthesis and characteristics of polycarbomethylsilane via a one-pot approach , 2020 .

[29]  A. Abbott,et al.  Mechanics of nozzle clogging during direct ink writing of fiber-reinforced composites , 2020 .

[30]  I. Park,et al.  Synthesis of new semi-fluorinated polysilazanes and their amphiphobic coating applications , 2020 .

[31]  M. Czabaj,et al.  4D Imaging of ceramic matrix composites during polymer infiltration and pyrolysis , 2020 .

[32]  C. Duty,et al.  Linking thermoset ink rheology to the stability of 3D-printed structures , 2020 .

[33]  V. Sglavo,et al.  Polymer-derived Si3N4 nanofelts as a novel oil spills clean-up architecture , 2020 .

[34]  E. Levänen,et al.  A comprehensive review of the photopolymerization of ceramic resins used in stereolithography , 2020 .

[35]  Tarik J. Dickens,et al.  Printability and performance of 3D conductive graphite structures , 2020 .

[36]  J. Ortyl,et al.  Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts , 2020, Materials.

[37]  G. Sorarù,et al.  Polymer-derived Si3N4 nanofelts for flexible, high temperature, lightweight and easy-manufacturable super-thermal insulators , 2020 .

[38]  Binbin Xu,et al.  Preparation of ultra-high temperature SiC–TiB2 nanocomposites from a single-source polymer precursor , 2020 .

[39]  Qing Huang,et al.  Preparation of SiC ceramic fiber from a photosensitive polycarbosilane , 2020 .

[40]  W. Tseng,et al.  Preparation of TiN–TiO2 composite nanoparticles for organic dye adsorption and photocatalysis , 2020 .

[41]  M. Cinibulk,et al.  Effects of low-temperature treatment on the properties of commercial preceramic polymers , 2020 .

[42]  E. Bernardo,et al.  Engineering of silicone-based mixtures for the digital light processing of Åkermanite scaffolds , 2020, Journal of the European Ceramic Society.

[43]  Z. Eckel,et al.  Additive manufacturing of polymer‐derived ceramic matrix composites , 2020, Journal of the American Ceramic Society.

[44]  Junmin Qian,et al.  Synthesis of cyano-polycarbosilane and investigation of its pyrolysis process , 2020 .

[45]  Zhihua Yang,et al.  Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics , 2020, Journal of Advanced Ceramics.

[46]  H. Scholz,et al.  Oxide ceramic fibers via dry spinning process—From lab to fab , 2020, International Journal of Applied Ceramic Technology.

[47]  N. S. Pinargote,et al.  Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review , 2020, Nanomaterials.

[48]  M. Dickerson,et al.  Polycarbosilane-Grafted Nanoparticles: Free-Flowing Hairy Nanoparticle Liquids That Convert to Ceramic , 2020, Chemistry of Materials.

[49]  M. Gringolts,et al.  Synthesis of high-molecular weight poly(1,1-dimethyl-1-silapentene) by olefin metathesis polymerization in the presence of Grubbs catalysts , 2020 .

[50]  R. Riedel,et al.  The fate and role of in situ formed carbon in polymer-derived ceramics , 2020 .

[51]  K. Cho,et al.  Characteristics of polycarbosilanes produced under different synthetic conditions and their influence on SiC fibers: Part I , 2020 .

[52]  Nadim S Hmeidat,et al.  Boron nitride‐reinforced polysilazane‐derived ceramic composites via direct‐ink writing , 2020, Journal of the American Ceramic Society.

[53]  M. Jiang,et al.  Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics , 2020 .

[54]  H. Koerner,et al.  Enabling direct writing of an epoxy resin with thermo-activated organic thixotropes , 2020 .

[55]  Y. Kotake,et al.  Synthesis and Properties of Polycarbosilanes Having Lactose‐Derived Structures , 2019, Journal of Polymer Science Part A: Polymer Chemistry.

[56]  Min Zhu,et al.  Organosilicon polymer-derived ceramics: An overview , 2019, Journal of Advanced Ceramics.

[57]  J. Falta,et al.  High surface area SiC(O)‐based ceramic by pyrolysis of poly (ethylene glycol) methacrylate‐modified polycarbosilane , 2019, Journal of the American Ceramic Society.

[58]  S. Foucaud,et al.  Towards a surface functionalisation and grafting of a polycarbosilane onto zirconium carbide particles for the development of hybrid core-shell structures , 2019, Applied Surface Science.

[59]  K. Zhou,et al.  3D SiC containing uniformly dispersed, aligned SiC whiskers: Printability, microstructure and mechanical properties , 2019, Journal of Alloys and Compounds.

[60]  Mark A. Skylar-Scott,et al.  Voxelated soft matter via multimaterial multinozzle 3D printing , 2019, Nature.

[61]  M. Gallei,et al.  Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics , 2019, Molecules.

[62]  M. Findlater,et al.  Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation , 2019, Molecules.

[63]  Xu Li,et al.  Synthesis, characterization, and ceramization of a carbon-rich SiCw-ZrC-ZrB2 preceramic polymer precursor , 2019, Ceramics International.

[64]  G. Wang,et al.  Polymer‐derived silicon nitride ceramics by digital light processing based additive manufacturing , 2019, Journal of the American Ceramic Society.

[65]  A. Gupta,et al.  Functional Polysilanes and their Optical, Chiroptical and Photoluminescence Properties , 2019, Current Organocatalysis.

[66]  Qiang Li,et al.  The Synthesis, Structure, Morphology Characterizations and Evolution Mechanisms of Nanosized Titanium Carbides and Their Further Applications , 2019, Nanomaterials.

[67]  K. Zhou,et al.  SiCw/SiCp reinforced 3D-SiC ceramics using direct ink writing of polycarbosilane-based solution: Microstructure, composition and mechanical properties , 2019, Journal of the European Ceramic Society.

[68]  R. Riedel,et al.  Polymer‐Derived Ultra‐High Temperature Ceramics (UHTCs) and Related Materials , 2019, Advanced Engineering Materials.

[69]  A. Gurlo,et al.  Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry , 2019, Additive Manufacturing.

[70]  Adam W. Jaycox,et al.  Active Mixing of Disparate Inks for Multimaterial 3D Printing , 2019, Advanced Materials Technologies.

[71]  S. Bernard,et al.  First synthesis of silicon nanocrystals in amorphous silicon nitride from a preceramic polymer , 2019, Nanotechnology.

[72]  Hai-tang Wu,et al.  Effect of ZrC content on the properties of biomorphic C–ZrC–SiC composites prepared using hybrid precursors of novel organometallic zirconium polymer and polycarbosilane , 2019, Journal of the European Ceramic Society.

[73]  R. Liska,et al.  Porous polysilazane-derived ceramic structures generated through photopolymerization-assisted solidification templating , 2019, Journal of the European Ceramic Society.

[74]  R. Klausen,et al.  Conjugated Polymers Inspired by Crystalline Silicon , 2019, Chemistry of Materials.

[75]  Deren Wang,et al.  Pyrolyzing preceramic polymer into ceramic reverses the wettability of the extreme wetting surface and enhances mechanical abrasion resistance , 2019, Ceramics International.

[76]  Zhanxiong Li,et al.  Synthesis, pyrolysis of a novel carborane ceramic precursor, and coating on carbon fiber , 2019, High Performance Polymers.

[77]  Huiling Duan,et al.  Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions , 2018, Advanced science.

[78]  P. Théato,et al.  Sulfur Chemistry in Polymer and Materials Science. , 2018, Macromolecular rapid communications.

[79]  E. Bernardo,et al.  Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers , 2018, Journal of the European Ceramic Society.

[80]  R. Raj,et al.  On the onset of fracture as a silicon‐based polymer converts into the ceramic phase , 2018, Journal of the American Ceramic Society.

[81]  Erwin Peng,et al.  Ceramic Robocasting: Recent Achievements, Potential, and Future Developments , 2018, Advanced materials.

[82]  H. Koerner,et al.  Synthesis of a Two-Component Carbosilane System for the Advanced Manufacturing of Polymer-Derived Ceramics , 2018, Chemistry of Materials.

[83]  Peng Liu,et al.  What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers , 2018, Journal of Manufacturing Processes.

[84]  T. Ware,et al.  Stereolithography of SiOC Polymer‐Derived Ceramics Filled with SiC Micronwhiskers , 2018, Advanced Engineering Materials.

[85]  Maciej Zaranek,et al.  Markovnikov Hydrosilylation of Alkenes: How an Oddity Becomes the Goal , 2018, ACS Catalysis.

[86]  E. Levashov,et al.  SHS Processing and Consolidation of Ta–Ti–C, Ta–Zr–C, and Ta–Hf–C Carbides for Ultra‐High‐Temperatures Application , 2018 .

[87]  M. Weinmann,et al.  Polymer Derived Si–B–C–N Ceramics: 30 Years of Research , 2018, Advanced Engineering Materials.

[88]  S. Foucaud,et al.  Rheological and thermal behaviours of a hyperbranched polycarbosilane , 2018, Applied Organometallic Chemistry.

[89]  T. Parthasarathy,et al.  Process modeling of the low‐temperature evolution and yield of polycarbosilanes for ceramic matrix composites , 2018 .

[90]  M. Rahaman,et al.  Silicon nitride bioceramics in healthcare , 2018 .

[91]  D. Sciti,et al.  Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride , 2018 .

[92]  E. Levashov,et al.  SHS of Silicon‐Based Ceramics for the High‐Temperature Applications , 2018, Advanced Engineering Materials.

[93]  Yusheng Shi,et al.  Preparation of Si3N4 foams by DCC method via dispersant reaction combined with protein-gelling , 2018 .

[94]  Hao Wang,et al.  Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics , 2018, Journal of Materials Science.

[95]  Wei Li,et al.  Preparation, ablation behavior and mechanism of C/C-ZrC-SiC and C/C-SiC composites , 2018 .

[96]  Mehdi Shahedi Asl,et al.  Effects of carbon additives on the properties of ZrB2–based composites: A review , 2018 .

[97]  Xinghong Zhang,et al.  Preparation and mechanical behaviors of SiOC-modified carbon-bonded carbon fiber composite with in-situ growth of three-dimensional SiC nanowires , 2018 .

[98]  Hejun Li,et al.  Preparation and characterization of Na and F co-doped hydroxyapatite coating reinforced by carbon nanotubes and SiC nanoparticles , 2018 .

[99]  Guodong Wang,et al.  Enhancing the yield of polycarbosilane synthesis via recycling of liquid by-product at atmospheric pressure , 2018 .

[100]  Yang Li,et al.  Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders , 2018 .

[101]  D. King,et al.  Novel processing approach to polymer‐derived ceramic matrix composites , 2018 .

[102]  Hongtao Yu,et al.  Polycarbosilane-modified styrene-based polymers with ultra-low dielectric constant, greatly enhanced mechanical strength and thermal stability , 2018 .

[103]  T. Zhao,et al.  Polymer precursor‐derived HfC–SiC ultrahigh‐temperature ceramic nanocomposites , 2018 .

[104]  C. Shao,et al.  Synthesis of soluble and meltable pre‐ceramic polymers for Zr‐containing ceramic nanocomposites , 2018 .

[105]  Y. D. Hazan,et al.  SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems , 2017 .

[106]  S. Bernard,et al.  A comprehensive study on the influence of the polyorganosilazane chemistry and material shape on the high temperature behavior of titanium nitride/silicon nitride nanocomposites , 2017 .

[107]  Haijun Zhang,et al.  Low-temperature preparation of Si3N4 whiskers bonded/reinforced SiC porous ceramics via foam-gelcasting combined with catalytic nitridation , 2017 .

[108]  F. Wiesbrock,et al.  Fifty Years of Hydrosilylation in Polymer Science: A Review of Current Trends of Low-Cost Transition-Metal and Metal-Free Catalysts, Non-Thermally Triggered Hydrosilylation Reactions, and Industrial Applications , 2017, Polymers.

[109]  Yiguang Wang,et al.  Synthesis of cross-linked polymer microspheres and pyrolysis conversion to polymer-derived ceramics , 2017 .

[110]  Hyungsun Kim,et al.  Synthesis of refractive index tunable silazane networks for transparent glass fiber reinforced composite , 2017 .

[111]  Yi Fei Wang,et al.  Preparation and characterization of polymer-derived Zr/Si/C multiphase ceramics and microspheres with electromagnetic wave absorbing capabilities , 2017 .

[112]  G. Mali,et al.  Growth mechanism and structure of electrochemically synthesized dendritic polymethylsilane molecules , 2017 .

[113]  L. Interrante,et al.  Grignard condensation routes to 1,3-disilacyclobutane-containing cyclolinear polycarbosilanes , 2017 .

[114]  Yi Fei Wang,et al.  A new simple way to polyzirconocenesilane for lightweight polymer-derived Zr/Si/C/O ceramic foams with electromagnetic wave-absorbing and high temperature-resistant properties , 2017 .

[115]  S. Bernard,et al.  Nanocomposites through the Chemistry of Single-Source Precursors: Understanding the Role of Chemistry behind the Design of Monolith-Type Nanostructured Titanium Nitride/Silicon Nitride. , 2017, Chemistry.

[116]  S. Surampudi,et al.  Synthesis of a Fragment of Crystalline Silicon: Poly(Cyclosilane). , 2017, Angewandte Chemie.

[117]  M. Yuasa,et al.  Synthesis and Properties of Polycarbosilanes Having 5-Membered Cyclic Carbonate Groups as Solid Polymer Electrolytes , 2016 .

[118]  V. Biju,et al.  Active filler controlled polymer pyrolysis – A promising route for the fabrication of advanced ceramics , 2016 .

[119]  J. Youngblood,et al.  Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions , 2016 .

[120]  R. Bordia,et al.  Controlled atmosphere pyrolysis of polyureasilazane for tailored volume fraction Si3N4/SiC nanocomposites powders , 2016 .

[121]  J. Ru,et al.  Synthesis, optical properties and stability of two σ-π conjugated polycarbosilanes with silylene-1,2-diphenyleneethylene-silylene and silylene-terephthalyidene-silylene backbones via Grignard reactions , 2016 .

[122]  S. Bernard,et al.  Polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers , 2016 .

[123]  Zhihua Yang,et al.  Synthesis of Novel Cobalt-Containing Polysilazane Nanofibers with Fluorescence by Electrospinning , 2016, Polymers.

[124]  Y. Menceloglu,et al.  Multifunctional 3D printing of heterogeneous hydrogel structures , 2016, Scientific Reports.

[125]  J. Youngblood,et al.  Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions , 2016 .

[126]  S. Foucaud,et al.  Preparation of C/SiC ceramics using a preceramic polycarbosilane synthesized via hydrosilylation , 2016 .

[127]  P. Colombo,et al.  Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer , 2016 .

[128]  Chao Bao,et al.  Synthesis, thermal properties, and ceramization of a novel ethynylaniline-terminated polysilazane , 2016 .

[129]  Jun Wang,et al.  Synthesis and properties of a precursor derived nano Zr(C, N)-carbon composite coating on SiC fibers , 2016 .

[130]  G. Dusserre,et al.  Cure kinetics of a polysilazane system: Experimental characterization and numerical modelling , 2016 .

[131]  B. Reeja‐Jayan,et al.  iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties. , 2016, Macromolecular rapid communications.

[132]  Ya-bo Zhu,et al.  Synthesis of a soluble preceramic polymer for ZrC using 2-hydroxybenzyl alcohol as carbon source , 2016 .

[133]  M. Buchmeiser,et al.  Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials , 2016 .

[134]  Z. Eckel,et al.  Additive manufacturing of polymer-derived ceramics , 2016, Science.

[135]  William E Lee,et al.  Low-temperature solution synthesis of nanosized hafnium carbide using pectin , 2016 .

[136]  Paolo Colombo,et al.  Stereolithography of SiOC Ceramic Microcomponents , 2016, Advanced materials.

[137]  Mangesh Lodhe,et al.  Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC , 2015, Journal of Advanced Ceramics.

[138]  D. Sciti,et al.  Synthesis of nanosized zirconium diboride powder via oxide-borohydride solid-state reaction , 2015 .

[139]  Dong Wook Kim,et al.  Metal-Free Hydrosilylation Polymerization by Borane Catalyst. , 2015, Angewandte Chemie.

[140]  A. Leineweber,et al.  Influence of the Carbon Content on the Crystallization and Oxidation Behavior of Polymer‐Derived Silicon Carbide (SiC) , 2015 .

[141]  Van Lam Nguyen,et al.  Synthesis and characterization of polymer-derived SiCN aerogel , 2015 .

[142]  T. Endo,et al.  Synthesis of polycarbosilanes having sugar‐derived structures as novel materials for cell cultivation , 2015 .

[143]  He Lijuan,et al.  Liquid polycarbosilanes: synthesis and evaluation as precursors for SiC ceramic , 2015 .

[144]  Rongjun Liu,et al.  Synthesis of zirconium, hafnium and their ternary borides by a polymer complex route , 2015, Journal of Sol-Gel Science and Technology.

[145]  Yiguang Wang,et al.  Synthesis of Non-oxide Porous Ceramics Using Random Copolymers as Precursors , 2015 .

[146]  A. Fabrizi,et al.  In Situ Reinforcement of Ti6Al4V Matrix Composites by Polymer‐Derived‐Ceramics Phases , 2015 .

[147]  Guanjun Chang,et al.  Benzocyclobutene/vinylphenyl-introduced polycarbosilanes with low dielectric constant, high temperature performance and photopatternability , 2015 .

[148]  Yanzi Gou,et al.  Synthesis and characterization of zirconium diboride ceramic precursor , 2015 .

[149]  Kazushi Yamada,et al.  Synthesis of Polysilanes Using Mg and Lewis Acid and the Consideration of This Reaction Mechanism , 2015 .

[150]  Hongwei Ma,et al.  Preparation of functionalized precursor of SiC ceramic via hydrosilylation polymerization of 1,1-diphenylethylene derivatives , 2015 .

[151]  L. David,et al.  Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode , 2015, Scientific Reports.

[152]  S. Bernard,et al.  Ceramic Nanocomposites from Tailor-Made Preceramic Polymers , 2015, Nanomaterials.

[153]  T. Endo,et al.  Synthesis and Ring-Opening Polymerization of Functional Silacyclobutane Derivatives and Their Application to Lithium Ion Batteries , 2015 .

[154]  Quan Zhou,et al.  Preceramic polymer as precursor for near‐stoichiometric silicon carbon with high ceramic yield , 2015 .

[155]  L. Săcărescu,et al.  Synthesis and properties of polydiphenylsilane/fullerene C60 nanocomposites , 2015 .

[156]  S. Qadri,et al.  In Situ Formation of Nanoparticle Titanium Carbide/Nitride Shaped Ceramics from Meltable Precursor Composition , 2014 .

[157]  T. Endo,et al.  Polymerization of an epoxy‐containing silacyclobutane and its application to networked polymer synthesis , 2014 .

[158]  H. Kleebe,et al.  Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs). , 2014, Inorganic chemistry.

[159]  P. Ortega,et al.  Synthesis of new amphiphilic water‐stable hyperbranched polycarbosilane polymers , 2014 .

[160]  Peter Greil,et al.  Additive Manufacturing of Ceramic‐Based Materials , 2014 .

[161]  Junhua Zhang,et al.  Pyrolysis synthesis and microstructure of zirconium carbide from new preceramic polymers , 2014 .

[162]  F. Hou,et al.  Synthesis and Characterization of Ethylene-Bridged Copolycarbosilazane as Precursors for Silicon Carbonitride Ceramics , 2014 .

[163]  Jie Kong,et al.  Magnetoceramics from the bulk pyrolysis of polysilazane cross-linked by polyferrocenylcarbosilanes with hyperbranched topology. , 2013, ACS applied materials & interfaces.

[164]  T. Zhao,et al.  Synthesis of ZrC–SiC Powders by a Preceramic Solution Route , 2013 .

[165]  Y. Leconte,et al.  From click to ceramic: An efficient way to generate multielement Si/Zr/C clicked-polymer-derived ceramics (cPDC) , 2013 .

[166]  R. Waterman Mechanisms of metal-catalyzed dehydrocoupling reactions. , 2013, Chemical Society reviews.

[167]  Zhaoju Yu,et al.  Preparation and dielectric properties of polymer-derived SiCTi ceramics , 2013 .

[168]  Junyu Li,et al.  Immobilization of Poly(1,1-dimethysilacyclobutane) by Means of Anionic Ring-Opening Polymerization on Organic Nanoparticles and Reinvestigation of Crystallization , 2013 .

[169]  Jun Wang,et al.  Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate high-temperature-resistant ZrC/SiC ceramic composite† , 2013 .

[170]  T. Zhao,et al.  Synthesis of soluble poly-yne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics. , 2013, Dalton transactions.

[171]  P. Lee,et al.  Borane-Catalyzed Si–H Activation Routes to Polysilanes Containing Thiolato Side Chains , 2013 .

[172]  K. Osakada,et al.  Nickel-Catalyzed Cyclopolymerization of Hexyl- and Phenylsilanes , 2013 .

[173]  Jun Wang,et al.  Synthesis and characterization of a novel precursor‐derived ZrC/ZrB2 ultra‐high‐temperature ceramic composite , 2013 .

[174]  L. Săcărescu,et al.  Microwave-assisted Wurtz coupling of methylphenyldichlorosilane in solvent-free conditions , 2012 .

[175]  Rongjun Liu,et al.  Carbothermal Synthesis of Submicrometer Zirconium Carbide from Polyzirconoxane and Phenolic Resin by the Facile One‐Pot Reaction , 2012 .

[176]  Katharina Quering,et al.  Evaluation of Ultra High Temperature Ceramics and Coating-Systems for their Application in Orbital and Air-Breathing Propulsion , 2012 .

[177]  Eiich Akiyama,et al.  Synthesis and Physical Properties of Poly(ethynylmethylsilane) Derivatives , 2012 .

[178]  T. Zhao,et al.  New route to synthesize preceramic polymers for zirconium carbide , 2012 .

[179]  B. Bal,et al.  Orthopedic applications of silicon nitride ceramics. , 2012, Acta biomaterialia.

[180]  Xiaodong Fan,et al.  Intramolecular cyclization in A2+B3 polymers via step-Wise polymerization resulting in a highly branched topology: quantitative determination of cycles by combined NMR and SEC analytics , 2012 .

[181]  Ralf Riedel,et al.  Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. , 2012, Chemical Society reviews.

[182]  T. Schmalz,et al.  Polymer derived non-oxide ceramics modified with late transition metals. , 2012, Chemical Society reviews.

[183]  W. Krenkel,et al.  Integration of CMC Brake Disks in Automotive Brake Systems , 2012 .

[184]  J. Sýkora,et al.  Identification of branched oligosilanes in the phenylsilane dehydrocoupling reaction , 2012 .

[185]  M. Buchmeiser,et al.  Ceramic Filament Fibers – A Review , 2012 .

[186]  C. Kajdas,et al.  A review and a fundamental theory of silicon nitride tribochemistry , 2012 .

[187]  M. Jin,et al.  Fourier-transform infrared spectroscopic studies of pristine polysilanes as precursor molecules for the solution deposition of amorphous silicon thin-films , 2012 .

[188]  P. Greil,et al.  Manufacturing of Silicon Carbide Knit Fabrics , 2012 .

[189]  Weigang Zhang,et al.  Synthesis and Microstructure of Zirconium Diboride Formed from Polymeric Precursor Pyrolysis , 2012 .

[190]  J. Sýkora,et al.  Zirconocene silanolate complexes and their heterogeneous siliceous analogues as catalysts for phenylsilane dehydropolymerization , 2012 .

[191]  Jiyu Fang,et al.  Synthesis of Spherical Non-Oxide Silicon Carbonitride Ceramic Particles , 2011 .

[192]  H. Xia,et al.  Synthesis and Characterization of a Propargyl-Substituted Polycarbosilane with High Ceramic Yield , 2011 .

[193]  H. Kleebe,et al.  Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization. , 2011, Small.

[194]  L. Zhai,et al.  Polymer-Derived Non-Oxide Ceramic Fibers—Past, Present and Future , 2011 .

[195]  T. Nishikubo,et al.  Synthesis of polycarbosilanes by A2 + Bn (n = 2, 3, and 4) type hydrosilylation reaction and evaluation of their refractive index properties , 2010 .

[196]  L. Toppare,et al.  Electrochemical Synthesis of Poly(methylsilyne) and Investigation of the Effects of Parameters on the Synthesis , 2010 .

[197]  G. Du,et al.  Dehydrocoupling of Organosilanes with a Dinuclear Nickel Hydride Catalyst and Isolation of a Nickel Silyl Complex , 2010 .

[198]  H. Frey,et al.  Multihydroxy-Functional Polysilanes via an Acetal Protecting Group Strategy , 2010 .

[199]  S. Hong,et al.  Formation of high-density TiN/Ti5Si3 ceramic composites using preceramic polymer , 2010 .

[200]  N. R. Thomas Frederic Stanley Kipping—Pioneer in Silicon Chemistry: His Life & Legacy , 2010 .

[201]  Paolo Colombo,et al.  Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics , 2010 .

[202]  R. Raj,et al.  Advances in Polymer Derived Ceramics and Composites: Ceramic Transactions , 2010 .

[203]  H. Klemm Silicon Nitride for High‐Temperature Applications , 2010 .

[204]  Litong Zhang,et al.  Modification of a liquid polycarbosilane with 9-BBN as a high-ceramic-yield precursor for SiC , 2010 .

[205]  T. Zhao,et al.  One pot synthesis of a soluble polymer for zirconium carbide , 2010 .

[206]  T. Zhao,et al.  Synthesis of nanosized zirconium carbide from preceramic polymers by the facile one‐pot reaction , 2010 .

[207]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[208]  P. Härter,et al.  Hyperbranched Polycarbosilanes of Homogeneous Architecture: Regioselective Hydrosilylation of AB2 Monomers and Consecutive Functionalization , 2010 .

[209]  C. Giordano,et al.  Synthesis of early-transition-metal carbide and nitride nanoparticles through the urea route and their use as alkylation catalysts. , 2009, Chemistry.

[210]  M. Antonietti,et al.  Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway , 2009 .

[211]  H. Xia,et al.  Synthesis and Properties of Liquid Polycarbosilanes with Hyperbranched Structures , 2009 .

[212]  Xiaodong Fan,et al.  UV-activated hydrosilylation: a facile approach for synthesis of hyperbranched polycarbosilanes , 2009 .

[213]  M. Yoshikawa,et al.  Formation of Continuous Pore Structures in Si–C–O Fibers by Adjusting the Melt Spinning Condition of a Polycarbosilane–Polysiloxane Polymer Blend , 2009 .

[214]  Guo‐Jun Zhang,et al.  Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties , 2009 .

[215]  L. Interrante,et al.  A Photocurable, Photoluminescent, Polycarbosilane Obtained by Acyclic Diene Metathesis (ADMET) Polymerization , 2009 .

[216]  F. Maglia,et al.  Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis , 2009 .

[217]  Q. Jia,et al.  A Chemical Solution Approach to Epitaxial Metal Nitride Thin Films , 2009 .

[218]  W. Trogler,et al.  Hydrosilylation of Diynes as a Route to Functional Polymers Delocalized Through Silicon , 2008 .

[219]  Litong Zhang,et al.  Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement , 2008 .

[220]  Dong‐Pyo Kim,et al.  Direct Preparation of High Surface Area Mesoporous SiC-Based Ceramic by Pyrolysis of a Self-Assembled Polycarbosilane-block-Polystyrene Diblock Copolymer , 2008 .

[221]  L. Sneddon,et al.  A Simple Polymeric Precursor Strategy for the Syntheses of Complex Zirconium and Hafnium‐Based Ultra High‐Temperature Silicon‐Carbide Composite Ceramics , 2008 .

[222]  Lai-fei Cheng,et al.  Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics , 2008 .

[223]  Lai-fei Cheng,et al.  Effect of the polycarbosilane structure on its final ceramic yield , 2008 .

[224]  Yigal D. Blum,et al.  Coatings and joining for SiC and SiC-composites for nuclear energy systems , 2007 .

[225]  M. Antonietti,et al.  Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source , 2007 .

[226]  Litong Zhang,et al.  One-pot synthesis and characterization of a new, branched polycarbosilane bearing allyl groups , 2007 .

[227]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[228]  R. Paine,et al.  Transamination Reactivity of Ti(NMe2)4 and Zr(NMe2)4 with 1,3,4,5,6-Pentamethyl-2-aminoborazine and Aryl Amines. Model Chemistry for the Formation of Metalloborazine Preceramic Polymers and MN/BN (M = Ti, Zr) Ceramic Composites , 2007 .

[229]  D. Kim,et al.  Ti-based ceramic composites derived from polymer pyrolysis , 2007 .

[230]  F. Lange The sophistication of ceramic science through silicon nitride studies , 2006 .

[231]  H. Hu,et al.  Continuous silica fiber reinforced silica composites densified by polymer-derived silicon nitride : Mechanical properties and microstructures , 2006 .

[232]  K. Wagener,et al.  The acyclic diene metathesis (ADMET) polymerization approach to silicon containing materials , 2006 .

[233]  Kozo Matsumoto,et al.  Synthesis of silicon nitride based ceramic nanoparticles by the pyrolysis of silazane block copolymer micelles , 2006 .

[234]  Richard G. Jones,et al.  High‐yield controlled syntheses of polysilanes by the Wurtz‐type reductive coupling reaction , 2006 .

[235]  謙爾 鈴木,et al.  有機-無機変換プロセスによる SiC 系セラミック繊維の合成 (総説) , 2006 .

[236]  C. Rao,et al.  Nanostructures of the binary nitrides, Bn, TiN, and NbN, prepared by the urea-route , 2006 .

[237]  Jiayu Xiao,et al.  Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure , 2006 .

[238]  A. Bunsell,et al.  A review of the development of three generations of small diameter silicon carbide fibres , 2006 .

[239]  H. Yamashita,et al.  Pd-catalyzed hydrosilylation polymerization of a dihydrosilane with diyne/triyne mixed systems affording crosslinked silylene–divinylene polymers and their properties , 2005 .

[240]  H. Hu,et al.  Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite , 2005 .

[241]  M. A. Kulandainathan,et al.  Novel electrochemical synthesis and characterisation of poly(methyl vinylsilane) and its co-polymers , 2005 .

[242]  I. Cabasso,et al.  Cyclic Voltammetric Study of Electroreduction of Dichlorosilanes , 2005 .

[243]  M. Achilleos,et al.  Room-Temperature, High-Yield Route to Poly(n-alkylmethylsilane)s and Poly(di-n-hexylsilane) , 2005 .

[244]  J. Ohshita,et al.  Preparation of Poly(silylene-p-phenylene)s containing a pendant fluorophor and their applications to PL imaging , 2005 .

[245]  M. Friess,et al.  Long fibre reinforced ceramics with active fillers and a modified intra-matrix bond based on the LPI process , 2005 .

[246]  B. Marciniec,et al.  Synthesis of phenylene–silylene–ethylene polymers via transition metal complex catalyzed hydrosilylation polymerization , 2005 .

[247]  J. Dyce,et al.  Comparison of computed tomographic and standard radiographic determination of tibial torsion in the dog. , 2005, Veterinary surgery : VS.

[248]  F. Riley Silicon Nitride and Related Materials , 2004 .

[249]  Takashi Ito,et al.  Dehydropolymerization of arylsilanes catalyzed by a novel silylmolybdenum complex. , 2003, Chemical communications.

[250]  Caihong Xu,et al.  Synthesis of iron‐containing polysilazane and its antioxidation effect on silicone oil and rubber , 2003 .

[251]  M. Rodríguez-Baeza,et al.  Synthesis of poly [(methylsi1oxane)-co-(dimethylsilazane)] copolymers as precursors of ceramic materials , 2003 .

[252]  Kozo Matsumoto,et al.  Anionic ring-opening polymerization of silacyclopropanes. , 2003 .

[253]  K. Wagener,et al.  ADMET Polymerization as a Route to Functionalized Polycarbosilanes , 2003 .

[254]  B. Tinant,et al.  Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts , 2002, Science.

[255]  K. Wagener,et al.  Synthesis of functionalized polycarbosilanes via One-Pot ADMET polymerization-macromolecular substitution , 2002 .

[256]  Ichiro Imae,et al.  Synthesis of stereoregular and optically active poly[{methyl(1-naphthyl)silylene}(o-phenylene)methylene] by platinum-catalyzed ring-opening polymerization , 2002 .

[257]  Caihong Xu,et al.  Synthesis and pyrolysis of polysilazane precursors containing linear–cyclic structures for Si/N/C‐based ceramics , 2001 .

[258]  R. Riedel,et al.  Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics , 2001 .

[259]  Walter E. Hammond,et al.  Design Methodologies for Space Transportation Systems , 2001 .

[260]  Timothy J. Peckham,et al.  Ring-Opening Polymerization Behavior of ansa- and Spirocyclic ansa-Zirconocene Complexes , 2001 .

[261]  M. Scarlete,et al.  Spectroscopic Investigation of the Synthesis of Thin Silicon Nitride Films on Silicon Single-Crystal Wafers via Ammonia-Assisted Pyrolysis of Organosilicon Polymers , 2001 .

[262]  K. Kikuta,et al.  Synthesis of Poly-Titanosilazanes and Conversion into Si3N4-TiN Ceramics , 2000 .

[263]  Y. Sugahara,et al.  Preparation of a Soluble Precursor by an Aminolysis Reaction of Zr(NEt2)4 and Its Pyrolytic Conversion into ZrN , 2000 .

[264]  T. Shono,et al.  Electroreductive Synthesis of Polysilanes, Polygermanes, and Related Polymers with Magnesium Electrodes(1). , 1999, The Journal of organic chemistry.

[265]  J. Y. Corey,et al.  Catalytic Dehydropolymerization of PhSiH3 to Polyphenylsilane with Substituted Group IV Metallocenes , 1999 .

[266]  H. Yamashita,et al.  Highly efficient palladium catalyst system for addition of trihydrosilanes to acetylenes and its application to thermally stable polycarbosilane synthesis , 1999 .

[267]  J. Bender,et al.  Synthesis and Characterization of a Soluble, Highly Branched Organo-Silicon−Nitride Polymer , 1999 .

[268]  F. Serein-Spirau,et al.  Electrochemical Stepwise Synthesis of Poly[2,5-(silanylene)thiophene] Precursors , 1998 .

[269]  Junichi Ishikawa,et al.  Thermosetting Mechanism Study of Poly[(phenylsilylene)ethynylene-1,3-phenyleneethynylene] by Solid-State NMR Spectroscopy and Computational Chemistry , 1998 .

[270]  T. Yamamura,et al.  High-strength alkali-resistant sintered SiC fibre stable to 2,200 °C , 1998, Nature.

[271]  D. Zargarian,et al.  Nickel indenyl complexes as precatalysts for dehydropolymerization of phenylsilane , 1998 .

[272]  L. Interrante,et al.  Modification of a Hyperbranched Hydridopolycarbosilane as a Route to New Polycarbosilanes , 1997 .

[273]  J. Dismukes,et al.  Chemical Synthesis of Microporous Nonoxide Ceramics from Polysilazanes , 1997 .

[274]  K. Iwata,et al.  New Highly Heat-Resistant Polymers Containing Silicon: Poly(silyleneethynylenephenyleneethynylene)s , 1997 .

[275]  A. Bunsell,et al.  Microstructural evolution of the latest generation of small‐diameter SiC‐based fibres tested at high temperatures , 1997 .

[276]  P. Gerbier,et al.  Organosilicon polymers with bis‐acetylenic units: Conductivity and ceramisation studies , 1996 .

[277]  R. Riedel,et al.  Chemical formation of ceramics , 1996 .

[278]  S. Schwab,et al.  Nanostructure of polymer-derived silicon nitride , 1995 .

[279]  T. Hisaki,et al.  Preparation and characterization of fluoropropyl‐substituted polysilane copolymers: Poly(3,3,3,‐trifluoropropylmethylsilane‐co‐methylpropylsilane) , 1995 .

[280]  Kozo Matsumoto,et al.  Living Anionic Ring-Opening Polymerization of 1,1-Dimethylsilacyclobutane , 1995 .

[281]  S. Danforth,et al.  Pyrolysis of Titanium‐Metal‐Filled Poly(siloxane) Preceramic Polymers: Effect of Atmosphere on Pyrolysis Product Chemistry , 1995 .

[282]  J. Pillot,et al.  Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics , 1995 .

[283]  P. Greil Active‐Filler‐Controlled Pyrolysis of Preceramic Polymers , 1995 .

[284]  R. Miller,et al.  Sacrificial additives in the wurtz synthesis of polysilanes , 1994 .

[285]  J. Ohshita,et al.  Polymeric Organosilicon systems. 20. Synthesis s and Some Reactions of Functionalyzed Organosilicon Polymers, Poly[(silylene)phenylenes] , 1994 .

[286]  K. Matyjaszewski,et al.  Microstructure in the Ring Opening Polymerization of Cyclotetrasilanes , 1994 .

[287]  Zhiping Jiang,et al.  Synthesis and pyrolysis of novel polymeric precursors to TiC/Al2O3, TiN/Al2O3, and AlN/TiN nanocomposites , 1994 .

[288]  E. Hengge,et al.  New Aspects in the Electrochemical Polymerization of Organosilicon Compounds , 1994 .

[289]  J. Moreau,et al.  One-step route to silicon carbide precursors by a tunable catalytic polycondensation , 1994 .

[290]  R. D. Miller,et al.  Low Temperature Wurtz-Type Polymerization of Substituted Dichlorosilanes , 1993 .

[291]  R. Benfield,et al.  Evaluation of the synthesis of polysilanes by the reductive-coupling of dihaloorganosilanes , 1993 .

[292]  F. Babonneau,et al.  Preceramic Polymer Routes to Silicon Carbide , 1993 .

[293]  P. Mutin,et al.  Mechanism of pyrolysis of polycarbosilanes: poly(silylethylene) and poly(dimethylsilylethylene) , 1993 .

[294]  C. X. Liao,et al.  Synthesis and characterization of poly(1-methyl-1-vinyl-1-silabutane), poly(1-phenyl-1-vinyl-1-silabutane), and poly(1,1-divinyl-1-silabutane) , 1992 .

[295]  D. Bonnell,et al.  Polymer precursor route to titanium diboride (TiB2)/titanium nitride (TiN) nanocomposites , 1992 .

[296]  L. Interrante,et al.  Preparation of poly(dichlorosilaethylene) and poly(silaethylene) via ring-opening polymerization , 1992 .

[297]  C. Guérin,et al.  The Thermal Conversion of Poly[(silylene)‐diacetylene] Metal Oxide Composites: A New Approach to β‐SiCMC Ceramics , 1992 .

[298]  É. Duguet,et al.  High molar mass polysilazane : a new polymer , 1992 .

[299]  A. Yassar,et al.  New poly[(silylene)diacetylenes] and poly[(germylene)diacetylenes]: synthesis and conductive properties , 1992 .

[300]  N. Jacobson,et al.  Reactions of Silicon Carbide and Silicon(IV) Oxide at Elevated Temperatures , 1992 .

[301]  W. Böcker,et al.  Polymer‐derived silicon nitride and silicon carbonitride fibers , 1992 .

[302]  C. Rüssel,et al.  Aluminium and titanium nitride coatings on graphite, prepared by pyrolysis of a polymeric precursor film , 1992 .

[303]  J. Birchall,et al.  Carbotherma1 synthesis of binary (MX) and ternary (M1, M2X) carbides, nitrides and borides from polymeric precursors , 1992 .

[304]  Dennis W. Smith,et al.  Acyclic diene metathesis polymerization: synthesis and characterization of unsaturated poly[carbo(dimethyl)silanes] , 1991 .

[305]  C. Rüssel,et al.  Titanium nitride and titanium aluminum nitride coatings on silica glass, prepared by pyrolysis of a polymeric precursor film , 1991 .

[306]  Zhiping Jiang,et al.  Preparation of titanium nitride (TiN) and titanium carbide (TiC) from a polymeric precursor , 1991 .

[307]  K. Matyjaszewski,et al.  Synthesis and Characterization of Polysilanes , 1991 .

[308]  L. Interrante,et al.  Synthesis and structure of a highly branched polycarbosilane derived from (chloromethyl)trichlorosilane , 1991 .

[309]  I. Yasui,et al.  X‐ray Diffraction Study of the Structure of Silicon Nitride Fiber Made from Perhydropolysilazane , 1991 .

[310]  Y. Mu,et al.  Poly(methylsilane)—A High Ceramic Yield Precursor to Silicon Carbide , 1991 .

[311]  L. Sneddon,et al.  Polymer-precursor routes to metal borides: synthesis of titanium boride (TiB2) and zirconium boride (ZrB2) , 1991 .

[312]  K. Sakamoto,et al.  Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene , 1990 .

[313]  Larry Neil Lewis,et al.  On the mechanism of metal colloid catalyzed hydrosilylation: proposed explanations for electronic effects and oxygen cocatalysis , 1990 .

[314]  A. Yassar,et al.  Organosilicon polymers: synthesis of poly[(silanylene)diethynylene]s with conducting properties , 1990 .

[315]  T. Shono,et al.  Electroreductive formation of polysilanes , 1990 .

[316]  L. Interrante,et al.  Preparation of a polymeric precursor to silicon carbide via ring-opening polymerization: synthesis of poly[(methylchlorosilylene)methylene] and poly(silapropylene) , 1989 .

[317]  J. Michl,et al.  Polysilane high polymers , 1989 .

[318]  K. Matyjaszewski,et al.  Preparation of polysilanes in the presence of ultrasound , 1988 .

[319]  R. Woodin,et al.  Zirconium Borohydride as a Zirconium Boride Precursor , 1988 .

[320]  T. Weidman,et al.  Poly(n-hexylsilyne): synthesis and properties of the first alkyl silicon [RSi]n network polymer , 1988 .

[321]  J. Pillot,et al.  New polycarbosilane models. 1. Poly[(methylchlorosilylene)methylene], a novel, functional polycarbosilane , 1988 .

[322]  J. Pillot,et al.  New polycarbosilane models. 2. First synthesis of poly(silapropylene) , 1988 .

[323]  K. Okamura Ceramic fibres from polymer precursors , 1987 .

[324]  J. Harrod,et al.  Identification of some intermediates in the titanocene-catalyzed dehydrogenative coupling of primary organosilanes , 1986 .

[325]  R. West,et al.  Polysilane high polymers with olefinic side groups: syntheses, properties, and addition of hydrogen halides , 1985 .

[326]  M. Omori,et al.  SIMPLE SYNTHESIS OF THE CONTINUOUS SiC FIBER WITH HIGH TENSILE STRENGTH , 1976 .

[327]  S. YAJIMA,et al.  Development of a silicon carbide fibre with high tensile strength , 1976, Nature.

[328]  M. Omori,et al.  CONTINUOUS SILICON CARBIDE FIBER OF HIGH TENSILE STRENGTH , 1975 .

[329]  P. Peshev,et al.  On the borothermic preparation of titanium, zirconium and hafnium diborides , 1968 .

[330]  D. R. Weyenberg,et al.  Platinum-Catalyzed Reactions of Silacyclobutanes and 1,3-Disilacyclobutanes , 1965 .

[331]  R. B. Sosman The common refractory oxides , 1916 .