AUTOMATED CLASSIFICATION OF PERIODIC VARIABLE STARS DETECTED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER
暂无分享,去创建一个
Carl J. Grillmair | Frank J. Masci | NASA Ames Research Center | Douglas I. Hoffman | C. Grillmair | R. Cutri | F. Masci | D. Hoffman | Roc M. Cutri California Institute of Technology
[1] Nathaniel R. Butler,et al. Mid-infrared period–luminosity relations of RR Lyrae stars derived from the AllWISE Data Release , 2014, 1402.4449.
[2] A. Dambis,et al. Mid-infrared period-luminosity relations for globular cluster RR Lyrae , 2014, 1401.5523.
[3] Dominic J. Benford,et al. Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.
[4] Wendy L. Freedman,et al. A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD–LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA , 2013, 1308.3160.
[5] M. Park,et al. Classification of Variable Stars Using Thick-Pen Transform Method , 2013 .
[6] M. Wainwright,et al. Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.
[7] VARIABILITY FLAGGING IN THE WIDE-FIELD INFRARED SURVEY EXPLORER PRELIMINARY DATA RELEASE , 2012 .
[8] Dominic J. Benford,et al. Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.
[9] Noureddine El Karoui,et al. Optimizing Automated Classification of Variable Stars in New Synoptic Surveys , 2012, 1201.4863.
[10] Tamara Broderick,et al. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP , 2011, 1112.3654.
[11] E. O. Ofek,et al. Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.
[12] Pavlos Protopapas,et al. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE , 2011 .
[13] Adam A. Miller,et al. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION , 2011, 1106.2832.
[14] Nathaniel R. Butler,et al. MID-INFRARED PERIOD–LUMINOSITY RELATIONS OF RR LYRAE STARS DERIVED FROM THE WISE PRELIMINARY DATA RELEASE , 2011, 1105.0055.
[15] E. L. Wright,et al. PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.
[16] Pavlos Protopapas,et al. QSO Selection Algorithm Using Time Variability and Machine Learning: Selection of 1,620 QSO Candidates from MACHO LMC Database , 2011, 1101.3316.
[17] P. Dubath,et al. Random forest automated supervised classification of Hipparcos periodic variable stars , 2011, 1101.2406.
[18] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[19] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[20] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[21] J. De Ridder,et al. AUTOMATED CLASSIFICATION OF VARIABLE STARS IN THE ASTEROSEISMOLOGY PROGRAM OF THE KEPLER SPACE MISSION , 2010, 1001.0507.
[22] K. Freeman,et al. Galaxies and their Masks , 2010 .
[23] Canada.,et al. Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.
[24] Sukanta Deb,et al. Light curve analysis of Variable stars using Fourier decomposition and Principal component analysis , 2009, 0903.3500.
[25] P. Dubath,et al. Variability type classification of multi-epoch surveys , 2009, 0901.2835.
[26] M. Zechmeister,et al. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.
[27] Max Kuhn,et al. Building Predictive Models in R Using the caret Package , 2008 .
[28] NEW β LYRAE AND ALGOL CANDIDATES FROM THE NORTHERN SKY VARIABILITY SURVEY , 2008 .
[29] Observatories of the Carnegie Institution of Washington,et al. The expansion field: the value of H0 , 2008, 0806.3018.
[30] L. M. Sarro,et al. Automated supervised classification of variable stars - I. Methodology , 2007, 0711.0703.
[31] John R. Percy. Understanding Variable Stars , 2007 .
[32] J. Torra,et al. A procedure for the classification of eclipsing binaries , 2007 .
[33] University of Michigan,et al. Analysis of RR Lyrae Stars in the Northern Sky Variability Survey , 2006, astro-ph/0606092.
[34] W. T. Vestrand,et al. Identifying Red Variables in the Northern Sky Variability Survey , 2004 .
[35] R. West,et al. The automated classification of astronomical light curves using Kohonen self-organizing maps , 2004, astro-ph/0408118.
[36] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[37] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[38] L. Eyer,et al. Automated classification of variable stars for All-Sky Automated Survey 1–2 data , 2005 .
[39] Shinichi Morishita,et al. On Classification and Regression , 1998, Discovery Science.
[40] Peter B. Stetson,et al. ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .
[41] S. Rucinski. A SIMPLE DESCRIPTION OF LIGHT CURVES OF W UMA SYSTEMS , 1993 .
[42] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[43] R. Stellingwerf. Period determination using phase dispersion minimization , 1978 .
[44] L. B. Lucy,et al. THE LIGHT CURVES OF W URSAE MAJORIS STARS. , 1968 .
[45] T. D. Kinman,et al. An RR Lyrae Star Survey with Ihe Lick 20-INCH Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer. , 1965 .