Continuous Curve Matching with Scale-Space Curvature and Extrema-Based Scale Selection

We extend a symmetric parametric curve matching algorithm designed for recognition and morphometry by incorporating Gaussian smoothing and curvature scale-space. A general statement of the matching theory and the properties of the associated algorithm is given. Gaussian smoothing is used to assist in approximating the continuous solution from the discrete solution given by dynamic programming. The method is then investigated in a multi-scale framework, which has the advantage of reducing the effects of noise and occlusion. A novel scale-space derived energy functional that incorporates geometric information from many scales at once is proposed. The related issue of selecting a smoothing kernel for a given matching problem is also explored, resulting in a topologically based method of scale-selection. This application requires estimating the matching between the fine and coarse scale versions of the same curve. We provide a tool for finding this inter-scale, intra-curve correspondence, based on tracking curvature extrema through scales. These novel algorithms are demonstrated on both 2D and 3D data.

[1]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jorge S. Marques,et al.  Shape alignment -- Optimal initial point and pose estimation , 1997, Pattern Recognit. Lett..

[3]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[4]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[5]  Hemant D. Tagare,et al.  A geometric criterion for shape-based non-rigid correspondence , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[9]  Rachid Deriche,et al.  Geodesic active contours for supervised texture segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Tony Lindeberg,et al.  A scale selection principle for estimating image deformations , 1998, Image Vis. Comput..

[11]  Robert Kohn,et al.  Representation and Self-Similarity of Shapes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Haim J. Wolfson On curve matching , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Paul A. Yushkevich,et al.  Intuitive, Localized Analysis of Shape Variability , 2001, IPMI.

[16]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[17]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[18]  Hemant D. Tagare,et al.  Shape-based nonrigid correspondence with application to heart motion analysis , 1999, IEEE Transactions on Medical Imaging.

[19]  Rachid Deriche,et al.  Geodesic active regions for supervised texture segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Marc Berthod,et al.  Optimal subpixel matching of contour chains and segments , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[22]  John S. Duncan,et al.  Pointwise tracking of left-ventricular motion in 3D , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[23]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[24]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Luc Van Gool,et al.  Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.

[26]  Alain Trouvé,et al.  On a Class of Diffeomorphic Matching Problems in One Dimension , 2000, SIAM J. Control. Optim..

[27]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Marc Berthod,et al.  Subpixel contour matching using continuous dynamic programming , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Philip N. Klein,et al.  Recognition of Shapes by Editing Shock Graphs , 2001, ICCV.

[32]  Philip N. Klein,et al.  Constructing 2D curve atlases , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[33]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[34]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[35]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[36]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[37]  Tyng-Luh Liu,et al.  Approximate tree matching and shape similarity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.