Experimental characterization of a concentrating photovoltaic system varying the light concentration

[1]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[2]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[3]  Ciro Aprea,et al.  An air cooled tube-fin evaporator model for an expansion valve control law , 1999 .

[4]  Space degradation of multijunction solar cells: An electroluminescence study , 2002 .

[5]  J. Gordon,et al.  Toward ultrahigh-flux photovoltaic concentration , 2004 .

[6]  I. Luque-Heredia,et al.  Photovoltaic concentration at the onset of its commercial deployment , 2006 .

[7]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[8]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[9]  Carlo Renno,et al.  A thermoeconomic model of a photovoltaic heat pump , 2010 .

[10]  I. Sagnes,et al.  Direct and indirect band gap room temperature electroluminescence of Ge diodes , 2010 .

[11]  Daniel Chemisana,et al.  Building Integrated Concentrating Photovoltaics: A review , 2011 .

[12]  J. I. Rosell,et al.  Characterization of a photovoltaic-thermal module for Fresnel linear concentrator , 2011 .

[13]  G. Almonacid,et al.  High Concentrator PhotoVoltaics efficiencies: Present status and forecast , 2011 .

[14]  G. Landi,et al.  Phases in copper–gallium–metal–sulfide films (metal=titanium, iron, or tin) , 2011 .

[15]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[16]  Laura Schaefer,et al.  System simulation of a linear concentrating photovoltaic system with an active cooling system , 2012 .

[17]  Ningfeng Huang,et al.  Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon , 2012 .

[18]  Atsushi Akisawa,et al.  Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account , 2012 .

[19]  P. Lugli,et al.  Electroluminescence and photoluminescence characterization of multijunction solar cells , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[20]  Canan Kandilli,et al.  Performance analysis of a novel concentrating photovoltaic combined system , 2013 .

[21]  Anna De Girolamo Del Mauro,et al.  Investigation of the optical characteristics of a combination of InP/ZnS-quantum dots with MWCNTs in a PMMA matrix , 2013 .

[22]  Dongsheng Wen,et al.  Characterization of the InGaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system , 2013 .

[23]  J. Gordon,et al.  Temperature dynamics of multijunction concentrator solar cells up to ultra‐high irradiance , 2013 .

[24]  Carlo Renno,et al.  Optimization of a concentrating photovoltaic thermal (CPV/T) system used for a domestic application , 2014 .

[25]  Carlo Renno,et al.  Dynamic Simulation of a CPV/T System Using the Finite Element Method , 2014 .

[26]  Thermal runaway in multijunction solar cells , 2013, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[27]  Joseph Appelbaum,et al.  Dependence of multi-junction solar cells parameters on concentration and temperature , 2014 .

[28]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[29]  Pedro Pérez-Higueras,et al.  Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain , 2015 .

[30]  Carlo Renno,et al.  Choice model for a modular configuration of a point-focus CPV/T system , 2015 .

[31]  Mehmet F. Orhan,et al.  Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies , 2015 .

[32]  B. García-Domingo,et al.  CPV module electric characterisation by artificial neural networks , 2015 .

[33]  Jie Ji,et al.  Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells , 2015 .

[34]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[35]  Eduardo F. Fernández,et al.  A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters , 2015 .

[36]  Lorenzo Egidi,et al.  Performance analysis of two 3.5 kWp CPV systems under real operating conditions , 2015 .

[37]  Fabienne Sallaberry,et al.  Optical losses due to tracking error estimation for a low concentrating solar collector , 2015 .

[38]  Carlo Renno,et al.  ANN model for predicting the direct normal irradiance and the global radiation for a solar application to a residential building , 2016 .

[39]  Hongfei Zheng,et al.  Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator , 2016 .

[40]  Carlo Renno,et al.  Experimental and theoretical model of a concentrating photovoltaic and thermal system , 2016 .

[41]  G De Feo,et al.  Life cycle assessment and economic analysis of a low concentrating photovoltaic system , 2016, Environmental technology.

[42]  George F. A. Dibb Developing the next generation of flexible solar panels , 2016 .

[43]  Eduardo F. Fernández,et al.  A theoretical analysis of the impact of atmospheric parameters on the spectral, electrical and thermal performance of a concentrating III–V triple-junction solar cell , 2016 .

[44]  Salvatore Miranda,et al.  Inefficiencies analysis of a point-focus CPV∕T system , 2016 .

[45]  Marta Victoria,et al.  Assessment of the optical efficiency of a primary lens to be used in a CPV system , 2016 .

[46]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .