Spectral triples and wavelets for higher-rank graphs

In this paper, we present a new way to associate a finitely summable spectral triple to a higher-rank graph $\Lambda$, via the infinite path space $\Lambda^\infty$ of $\Lambda$. Moreover, we prove that this spectral triple has a close connection to the wavelet decomposition of $\Lambda^\infty$ which was introduced by Farsi, Gillaspy, Kang, and Packer in 2015. We first introduce the concept of stationary $k$-Bratteli diagrams, in order to associate a family of ultrametric Cantor sets, and their associated Pearson-Bellissard spectral triples, to a finite, strongly connected higher-rank graph $\Lambda$. We then study the zeta function, abscissa of convergence, and Dixmier trace associated to the Pearson-Bellissard spectral triples of these Cantor sets, and show these spectral triples are $\zeta$-regular in the sense of Pearson and Bellissard. We obtain an integral formula for the Dixmier trace given by integration against a measure $\mu$, and show that $\mu$ is a rescaled version of the measure $M$ on $\Lambda^\infty$ which was introduced by an Huef, Laca, Raeburn, and Sims. Finally, we investigate the eigenspaces of a family of Laplace-Beltrami operators associated to the Dirichlet forms of the spectral triples. We show that these eigenspaces refine the wavelet decomposition of $L^2(\Lambda^\infty, M)$ which was constructed by Farsi et al.

[1]  A. Connes On the spectral characterization of manifolds , 2008, 0810.2088.

[2]  P. Jorgensen,et al.  Representations of Cuntz-Krieger relations, dynamics on Bratteli diagrams, and path-space measures , 2014, 1410.2318.

[3]  Joseph C. Várilly,et al.  Elements of Noncommutative Geometry , 2000 .

[4]  J. Sauvageot,et al.  Spectral triples for the Sierpinski gasket , 2011, 1112.6401.

[5]  G. Hardy,et al.  The general theory of Dirichlet's series , 1916, The Mathematical Gazette.

[6]  Jonathan H. Brown,et al.  Cartan Subalgebras in C*-Algebras of Haus dorff étale Groupoids , 2015, 1503.03521.

[7]  G. Elliott,et al.  The Category of Ordered Bratteli Diagrams , 2015, Canadian Journal of Mathematics.

[8]  Aidan Sims,et al.  The C*-algebras of finitely aligned higher-rank graphs , 2003 .

[9]  F. Sukochev,et al.  Singular Traces: Theory and Applications , 2012 .

[10]  J. Bellissard,et al.  Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets , 2008, 0802.1336.

[11]  A. Connes,et al.  Particle models and noncommutative geometry , 1991 .

[12]  T. Isola,et al.  Singular Traces on Semifinite von Neumann Algebras , 1995 .

[13]  Semifinite spectral triples associated with graph C*-algebras , 2007, 0707.3853.

[14]  Spectral triples for AF C*-algebras and metrics on the cantor set , 2003, math/0309044.

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  Ljiljana Gajic ON ULTRAMETRIC SPACE , 2001 .

[17]  M. Lapidus,et al.  Dirac operators and spectral triples for some fractal sets built on curves , 2006, math/0610222.

[18]  Guy Battle,et al.  Wavelets for Quantum Gravity and Divergence-Free Wavelets , 1994 .

[19]  Sums of two-dimensional spectral triples , 2006, math/0601024.

[20]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[21]  S. Kakutani On Equivalence of Infinite Product Measures , 1948 .

[22]  M. Marcolli,et al.  Cuntz–Krieger Algebras and Wavelets on Fractals , 2009, 0908.0596.

[23]  I. Raeburn,et al.  KMS states on the C*-algebra of a higher-rank graph and periodicity in the path space , 2014, 1404.6819.

[24]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[25]  A. Kumjian,et al.  On higher rank graph C ∗ -algebras , 2000 .

[26]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[27]  Rank-two graphs whose C∗-algebras are direct limits of circle algebras , 2005, math/0512254.

[28]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[29]  Uriel G. Rothblum,et al.  Expansions of Sums of Matrix Powers , 1981 .

[30]  J. Kellendonk,et al.  Special triples from stationary Bratteli diagrams , 2012, 1210.7360.

[31]  Astrid an Huef,et al.  AF-embeddability of 2-graph algebras and quasidiagonality of k-graph algebras , 2015, 1508.02746.

[32]  Spectral flow and Dixmier traces , 2002, math/0205076.

[33]  A. Julien,et al.  Transverse Laplacians for Substitution Tilings , 2009, 0908.1095.

[34]  J. Ellis,et al.  Quantum-gravity analysis of gamma-ray bursts using wavelets , 2002, astro-ph/0210124.

[35]  Carla Farsi,et al.  Separable representations, KMS states, and wavelets for higher-rank graphs , 2015, 1505.00485.

[36]  B. Mesland,et al.  Spectral triples and finite summability on Cuntz-Krieger algebras , 2014, Documenta Mathematica.

[37]  D. Zanin,et al.  Conformal trace theorem for Julia sets of quadratic polynomials , 2019, Ergodic Theory and Dynamical Systems.

[38]  Marc Kessebohmer,et al.  Spectral metric spaces for Gibbs measures , 2010, 1012.5152.

[39]  Aidan Sims,et al.  Simplicity of C*‐algebras associated to higher‐rank graphs , 2006, math/0602120.

[40]  I. Raeburn,et al.  KMS states on C⁎-algebras associated to higher-rank graphs☆ , 2012, 1212.6811.

[41]  Carla Farsi,et al.  Wavelets and Graph C ∗ -Algebras , 2016, 1601.00061.

[42]  Spatial realisations of KMS states on the C*-algebras of higher-rank graphs , 2014, 1410.0085.

[43]  Daniele Guido,et al.  Dimensions and singular traces for spectral triples, with applications to fractals , 2003 .

[44]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[45]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[46]  Alf Jonsson,et al.  Wavelets on fractals and besov spaces , 1998 .

[47]  F. Sukochev,et al.  Noncommutative residues and a characterisation of the noncommutative integral , 2009, 0905.0187.

[48]  Sooran Kang,et al.  Aperiodicity and primitive ideals of row-finite k-graphs , 2014 .

[49]  Sooran Kang,et al.  The primitive ideals of the Cuntz–Krieger algebra of a row-finite higher-rank graph with no sources ☆ , 2013, 1305.6388.

[50]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[51]  A. Rennie,et al.  Shift–tail equivalence and an unbounded representative of the Cuntz–Pimsner extension , 2015, Ergodic Theory and Dynamical Systems.

[52]  L. O. Clark,et al.  Simplicity of algebras associated to étale groupoids , 2012, 1204.3127.

[53]  R. Durrett Probability: Theory and Examples , 1993 .

[54]  Erik Christensen,et al.  Spectral triples and the geometry of fractals , 2010, 1002.3081.

[55]  K. Davidson,et al.  Periodicity in Rank 2 Graph Algebras , 2007, Canadian Journal of Mathematics.

[56]  Generalized gauge actions on $\kappa$-graph $C*-Algebras: KMS states and Hausdorff structure , 2018, 1807.08665.

[57]  Carla Farsi,et al.  Wavelets and spectral triples for fractal representations of Cuntz algebras , 2016, 1603.06979.

[58]  Dixmier traces as singular symmetric functionals and applications to measurable operators , 2005, math/0501131.

[59]  Сергей Владимирович Козырев,et al.  Теория всплесков как $p$-адический спектральный анализ@@@Wavelet theory as $p$-adic spectral analysis , 2002 .

[60]  J. Gambaudo,et al.  Communications in Mathematical Physics Spaces of Tilings , Finite Telescopic Approximations and Gap-Labeling , 2005 .

[61]  Michel L. Lapidus,et al.  Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets , 2012, 1212.0878.

[62]  A. Khrennikov,et al.  Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .

[63]  A. Connes,et al.  The local index formula in noncommutative geometry , 1995 .