Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii

The conversion of glycerol to 1,3-propanediol by Citrobacter freundii DSM 30040 was optimized in single- and two-stage continuous cultures. The productivity of 1,3-propanediol formation was highest under glycerol limitation and increased with the dilution rate (D) to a maximum of 3.7 g·l−1·h−1. Glycerol dehydratase seemed to be the rate-limiting step in 1,3-propanediol formation. Conditions for the two-stage fermentation process were as follows: first stage, glycerol limitation (250mM), pH 7.2, D=0.1 h−, 31° C; second stage, additional glycerol, pH 6.6, D=0.05 h−1, 28° C. Under these conditions 875mM glycerol were consumed, the final 1,3-propanediol concentration was 545mM, and the overall productivity 1.38 g·1−1·h−1.

[1]  Cecil W. Forsberg,et al.  Production of 1,3-Propanediol from Glycerol by Clostridium acetobutylicum and Other Clostridium Species , 1987, Applied and environmental microbiology.

[2]  R. Abeles,et al.  beta-Hydroxypropionaldehyde, an intermediate in the formation of 1,3-propanediol by Aerobacter aerogenes. , 1960, Biochimica et biophysica acta.

[3]  J. Rivière On the microbial metabolism of the tartaric acid isomers , 1958 .

[4]  N. Pfennig,et al.  Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien , 1966, Archiv für Mikrobiologie.

[5]  M. J. Teixeira de Mattos,et al.  Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture , 1987, Archives of Microbiology.

[6]  M. Eggstein,et al.  Triglycerides and Glycerol Determination after Alkaline Hydrolysis , 1974 .

[7]  E. Lin,et al.  Regulation of Glycerol Catabolism in Klebsiella aerogenes , 1974, Journal of bacteriology.

[8]  E. Lin,et al.  Klebsiella pneumoniae 1,3-propanediol:NAD+ oxidoreductase , 1987, Journal of bacteriology.

[9]  H. Biebl,et al.  Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat , 1991, Applied Microbiology and Biotechnology.

[10]  Wolf-Dieter Deckwer,et al.  Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains , 1990, Applied Microbiology and Biotechnology.

[11]  Hubert Bahl,et al.  Parameters Affecting Solvent Production by Clostridium pasteurianum , 1992, Applied and environmental microbiology.

[12]  Philippe Soucaille,et al.  Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. , 2005, Metabolic engineering.

[13]  T. Toraya,et al.  Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. , 1977, The Journal of biological chemistry.

[14]  S. Tanenbaum,et al.  System Development for Linked-Fermentation Production of Solvents from Algal Biomass , 1983, Applied and environmental microbiology.

[15]  Helmut Schütz,et al.  Anaerobic Reduction of Glycerol to Propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri , 1984 .

[16]  K. Schmidt,et al.  [CAROTENOIDS IN THIORHODACEAE. I. OKENONEAS THE PRINCIPAL CAROTENOID IN CHROMATIUM OKENII PERTY]. , 1963, Archiv fur Mikrobiologie.

[17]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[18]  H. Schlegel,et al.  Die Carotinoide der Thiorhodaceae , 2004, Archiv für Mikrobiologie.