The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size

[1]  W. D. Means,et al.  Dynamic Recrystallization of Minerals , 2013 .

[2]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[3]  P. .. Phakey,et al.  Transmission Electron Microscopy of Experimentally Deformed Olivine Crystals , 2013 .

[4]  D. Yamazaki,et al.  High silicon self-diffusion coefficient in dry forsterite , 2012 .

[5]  Greg Hirth,et al.  Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle , 2011 .

[6]  Georg Stadler,et al.  Multi‐scale dynamics and rheology of mantle flow with plates , 2011 .

[7]  D. Kohlstedt,et al.  Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic‐preferred orientation , 2011 .

[8]  J. Keefner,et al.  Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle , 2011 .

[9]  H. Kokkonen,et al.  Dislocation recovery in fine-grained polycrystalline olivine , 2011, PCM 2011.

[10]  J. Platt,et al.  Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere , 2011 .

[11]  D. Kohlstedt,et al.  Dislocation creep accommodated by grain boundary sliding in dunite , 2010 .

[12]  J. Gerald,et al.  Dislocation creep of fine‐grained olivine , 2009 .

[13]  B. Evans,et al.  The kinetics of microstructural evolution during deformation of calcite , 2009 .

[14]  M. Behn,et al.  Implications of grain size evolution on the seismic structure of the oceanic upper mantle , 2008 .

[15]  S. Karato,et al.  Strength of single-crystal orthopyroxene under lithospheric conditions , 2008 .

[16]  Philip Skemer,et al.  Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies , 2008 .

[17]  S. Karato,et al.  A new analysis of experimental data on olivine rheology , 2008 .

[18]  S. Karato Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth , 2008 .

[19]  S. Chakraborty,et al.  Fe–Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity , 2007 .

[20]  A. Heuer,et al.  Determination of Pipe Diffusion Coefficients in Undoped and Magnesia-Doped Sapphire (α-Al2O3): A Study Based on Annihilation of Dislocation Dipoles , 2003 .

[21]  S. Chakraborty,et al.  Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle , 2002 .

[22]  S. Karato,et al.  Effects of water on dynamically recrystallized grain-size of olivine , 2001 .

[23]  B. Evans,et al.  A few remarks on the kinetics of static grain growth in rocks , 2001 .

[24]  C. Spiers,et al.  Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? , 2001 .

[25]  K. Kunze,et al.  High shear strain of olivine aggregates: rheological and seismic consequences. , 2000, Science.

[26]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[27]  D. Kohlstedt,et al.  Diffusion of Hydrogen and Intrinsic Point Defects in Olivine , 1998 .

[28]  D. Kohlstedt,et al.  High-temperature creep of olivine crystals from four localities , 1994 .

[29]  J. Gerald,et al.  Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks , 1993 .

[30]  P. Silver,et al.  Interpretation of SKS-waves using samples from the subcontinental lithosphere , 1993 .

[31]  D. Kohlstedt,et al.  High-temperature creep of olivine single crystals, 2. dislocation structures , 1992 .

[32]  D. Kohlstedt,et al.  High‐temperature creep of olivine single crystals 1. Mechanical results for buffered samples , 1991 .

[33]  M. Paterson,et al.  Rheology of synthetic olivine aggregates: Influence of grain size and water , 1986 .

[34]  J. Poirier Creep of Crystals , 1985 .

[35]  M. Paterson,et al.  The role of water in the deformation of dunite , 1984 .

[36]  N. Carter,et al.  Rheology of the upper mantle: Inferences from peridotite xenoliths , 1980 .

[37]  S. Karato,et al.  Dynamic recrystallization of olivine single crystals during high‐temperature creep , 1980 .

[38]  W. Nix,et al.  Theoretical descriptions of climb controlled steady state creep at high and intermediate temperatures , 1979 .

[39]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures , 1977 .

[40]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 1. Mechanical data , 1977 .

[41]  R. Twiss Theory and applicability of a recrystallized grain size paleopiezometer , 1977 .

[42]  A. S. Argon,et al.  Steady-state creep of single-phase crystalline matter at high temperature , 1976 .

[43]  D. Kohlstedt,et al.  Low-stress high-temperature creep in olivine single crystals , 1974 .

[44]  D. Kohlstedt,et al.  Laboratory study of dislocation climb and diffusion in olivine , 1973 .

[45]  J. Narayan,et al.  Self-climb of dislocation loops in magnesium oxide , 1972 .

[46]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .