Bohm's Theorem
暂无分享,去创建一个
Mariangiola Dezani-Ciancaglini | Adolfo Piperno | S Guerrini | M. Dezani-Ciancaglini | A. Piperno | S. Guerrini
[1] A. Church. A Set of Postulates for the Foundation of Logic , 1932 .
[2] S. Kleene. A Theory of Positive Integers in Formal Logic. Part II , 1935 .
[3] A. Church. An Unsolvable Problem of Elementary Number Theory , 1936 .
[4] S. Kleene. $\lambda$-definability and recursiveness , 1936 .
[5] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[6] Alan M. Turing,et al. Computability and λ-definability , 1937, Journal of Symbolic Logic.
[7] A. Turing,et al. On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .
[8] Corrado Böhm,et al. Calculatrices digitales. Du déchiffrage de formules logico-mathématiques par la machine même dans la conception du programme , 1954 .
[9] John McCarthy,et al. Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.
[10] James H. Morris,et al. Lambda-calculus models of programming languages. , 1969 .
[11] Mariangiola Dezani-Ciancaglini,et al. Combinatorial Problems, Combinator Equations and Normal Forms , 1974, ICALP.
[12] T. B. Steel,et al. Introduction to the CUCH , 1975 .
[13] Robert D. Tennent,et al. The denotational semantics of programming languages , 1976, CACM.
[14] Christopher P. Wadsworth,et al. The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..
[15] Donald E. Knuth,et al. The Early Development of Programming Languages. , 1977 .
[16] Haskell B. Curry. ON A POLYNOMIAL REPRESENTATION OF λβ NORMAL FORMS , 1978 .
[17] Robin Milner,et al. A Metalanguage for interactive proof in LCF , 1978, POPL.
[18] Mariangiola Dezani-Ciancaglini,et al. (Semi)-separability of Finite Sets of Terms in Scott's D_infty-Models of the lambda-Calculus , 1978, ICALP.
[19] Mariangiola Dezani-Ciancaglini,et al. A Discrimination Algorithm Inside lambda-beta-Calculus , 1979, Theor. Comput. Sci..
[20] Joseph E. Stoy,et al. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .
[21] Robin Milner,et al. A proposal for standard ML , 1984, LFP '84.
[22] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[23] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[24] Corrado Böhm,et al. Surjectivity for Finite Sets of Combinators by Weak Reduction , 1987, CSL.
[25] Enrico Tronci,et al. X-Separability and Left-Invertibility in lambda-calculus , 1987, LICS.
[26] Corrado Böhm,et al. Characterizing X-separability and one-side invertibility in lambda - beta - Omega -calculus , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.
[27] Glynn Winskel,et al. The formal semantics of programming languages - an introduction , 1993, Foundation of computing series.
[28] Gérard P. Huet. An Analysis of Böhm's Theorem , 1993, Theor. Comput. Sci..
[29] Davide Sangiorgi. The Lazy Lambda Calculus in a Concurrency Scenario , 1994, Inf. Comput..
[30] Corrado Böhm,et al. Lambda-Definition of Function(al)s by Normal Forms , 1994, ESOP.
[31] Chris Hankin. Lambda Calculi: A Guide for Computer Scientists , 1995 .
[32] Mariangiola Dezani-Ciancaglini,et al. Filter models for conjunctive-disjunctive l-calculi , 1996 .
[33] Cosimo Laneve,et al. The discriminating power of multiplicities in the-calculus , 1996 .
[34] M. Dezani,et al. Bohm's theorem for Bohm trees , 1998 .
[35] Jerzy Tiuryn,et al. Discrimination by Parallel Observers: The Algorithm , 1999, Inf. Comput..
[36] Adolfo Piperno,et al. An Algebraic View of the Böhm-Out Technique , 1999, Theor. Comput. Sci..
[37] Mariangiola Dezani-Ciancaglini,et al. From Bohm's Theorem to Observational Equivalences: an Informal Account , 2001, BOTH.
[38] Benjamin C. Pierce,et al. Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[39] Paula Severi,et al. Infinitary lambda calculus and discrimination of Berarducci trees , 2003, Theor. Comput. Sci..
[40] Peter Seibel,et al. Practical Common Lisp , 2005 .
[41] Richard Statman,et al. Böhm's Theorem, Church's Delta, Numeral Systems, and Ershov Morphisms , 2005, Processes, Terms and Cycles.
[42] J. Ketema,et al. Bohm-Like Trees for Rewriting , 2006 .