InP and GaN high electron mobility transistors for millimeter-wave applications

This paper reviews two important candidates of millimeterand sub-millimeter-wave applications, InPand GaN-based high electron mobility transistors (HEMTs). For both devices, the gate length scaling has already well developed to the dimension of 15–30 nm. For further improvement in the cutoff frequency, an importance of the careful managements of parasitic components in the devices is discussed. Successful reduction of the parasitic gate delay time will enable us to achieve a cutoff frequency of over 1THz in InP-based HEMTs and that of over 500GHz in GaN-based HEMTs.

[1]  A. Schmitz,et al.  Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency , 2011, 2011 International Electron Devices Meeting.

[2]  J. Woodall,et al.  An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT , 1985, IEEE Electron Device Letters.

[3]  Tetsu Kachi Current status of GaN power devices , 2013, IEICE Electron. Express.

[4]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[5]  Haifeng Sun,et al.  205-GHz (Al,In)N/GaN HEMTs , 2010, IEEE Electron Device Letters.

[6]  Berinder Brar,et al.  fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max > 2.7 mS/µm , 2011, 2011 International Electron Devices Meeting.

[7]  P. Chao,et al.  DC and microwave characteristics of sub-0.1- mu m gate-length planar-doped pseudomorphic HEMTs , 1989 .

[8]  Dong Seup Lee,et al.  GaN high electron mobility transistors for sub-millimeter wave applications , 2014 .

[9]  T. Suemitsu,et al.  An intrinsic delay extraction method for Schottky gate field effect transistors , 2004, IEEE Electron Device Letters.

[10]  W. Deal,et al.  First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process , 2015, IEEE Electron Device Letters.

[11]  Y. Yamashita,et al.  Pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.7/Ga/sub 0.3/As HEMTs with an ultrahigh f/sub T/ of 562 GHz , 2002, IEEE Electron Device Letters.

[12]  Kevin J. Chen,et al.  High-performance InP-based enhancement-mode HEMTs using non-alloyed ohmic contacts and Pt-based buried-gate technologies , 1996 .

[13]  Tetsuya Suemitsu,et al.  30-nm two-step recess gate InP-Based InAlAs/InGaAs HEMTs , 2002 .

[14]  Dong Seup Lee,et al.  300-GHz InAlN/GaN HEMTs With InGaN Back Barrier , 2011, IEEE Electron Device Letters.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Seong-Jin Yeon,et al.  610 GHz InAlAs/In0.75GaAs Metamorphic HEMTs with an Ultra-Short 15-nm-Gate , 2007, 2007 IEEE International Electron Devices Meeting.

[17]  P. F. Marsh,et al.  Reliability of metamorphic HEMTs on GaAs substrates , 2002, Microelectron. Reliab..

[18]  P. Tasker,et al.  Importance of source and drain resistance to the maximum f/sub T/ of millimeter-wave MODFETs , 1989, IEEE Electron Device Letters.

[19]  Toshiaki Matsui,et al.  AlGaN/GaN Heterostructure Field-Effect Transistors on 4H-SiC Substrates with Current-Gain Cutoff Frequency of 190 GHz , 2008 .

[20]  Dae-Hyun Kim,et al.  30-nm InAs PHEMTs With $f_{T} = \hbox{644}\ \hbox{GHz}$ and $f_{\max} = \hbox{681}\ \hbox{GHz}$ , 2010, IEEE Electron Device Letters.

[21]  H. Morkoç,et al.  Strained layer heterostructures, and their applications to MODFETs, HBTs, and lasers , 1993, Proc. IEEE.

[23]  W. Kopp,et al.  High transconductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors , 1985, IEEE Electron Device Letters.

[24]  J.C.M. Hwang,et al.  Electron-beam fabrication of GaAs low-noise MESFET's using a new trilayer resist technique , 1985, IEEE Transactions on Electron Devices.

[25]  G. Snider,et al.  Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz , 2013 .

[26]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[27]  M. Hueschen,et al.  Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs , 1988 .

[28]  T. Mimura Development of High Electron Mobility Transistor , 2005 .

[29]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.

[30]  D. Greenberg,et al.  A recessed-gate InAlAs/n/sup +/-InP HFET with an InP etch-stop layer , 1992, IEEE Electron Device Letters.

[31]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[32]  Y. G. Chai,et al.  Submicron GaAs microwave FET's with low parasitic gate and source resistances , 1983, IEEE Electron Device Letters.

[33]  I. Watanabe,et al.  547-GHz f/sub t/ In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As HEMTs with reduced source and drain resistance , 2004, IEEE Electron Device Letters.

[34]  Daehyun Kim,et al.  Analysis of Gate Delay Scaling in In0.7Ga0.3As-Channel High Electron Mobility Transistors , 2009 .

[35]  Umesh K. Mishra,et al.  The toughest transistor yet [GaN transistors] , 2002 .

[36]  Tetsuya Suemitsu,et al.  Intrinsic Transit Delay and Effective Electron Velocity of AlGaN/GaN High Electron Mobility Transistors , 2005 .

[37]  M. Kudo,et al.  New low contact resistance triple capping layer enabling very high Gm InAIAs/lnGaAs HEMTs , 1996 .