General Edge-isoperimetric Inequalities, Part I: Information-theoretical Methods
暂无分享,去创建一个
[1] Rudolf Ahlswede,et al. Contributions to the geometry of hamming spaces , 1977, Discret. Math..
[2] L. H. Harper. A necessary condition on minimal cube numberings , 1967 .
[3] Rudolf Ahlswede,et al. Edge isoperimetric theorems for integer point arrays , 1995 .
[4] Rudolf Ahlswede,et al. Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.
[5] B. Lindström,et al. A Generalization of a Combinatorial Theorem of Macaulay , 1969 .
[6] L. H. Harper. Optimal Assignments of Numbers to Vertices , 1964 .
[7] N. Cai,et al. Diametric theorems in sequence spaces , 1992, Comb..
[8] John H. Lindsey,et al. Assignment of Numbers to Vertices , 1964 .
[9] Daniel J. Kleitman,et al. Configurations Maximizing the Number of Pairs of Hamming-Adjacent Lattice Points , 1971 .
[10] ofer Fakult. THE ASYMPTOTIC BEHAVIOUR OF DIAMETERS IN THE AVERAGE , 1994 .
[11] Joseph B. Kruskal. The number of s-dimensional faces in a complex: An analogy between the simplex and the cube , 1969 .
[12] Sergiu Hart,et al. A note on the edges of the n-cube , 1976, Discret. Math..
[13] R. Ahlswede,et al. Graphs with maximal number of adjacent pairs of edges , 1978 .
[14] A. J. Bernstein,et al. Maximally Connected Arrays on the n-Cube , 1967 .
[15] G. F. Clements. Sets of lattice points which contain a maximal number of edges , 1971 .
[16] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[17] Béla Bollobás,et al. Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.
[18] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[19] Rudolf Ahlswede,et al. The Asymptotic Behavior of Diameters in the Average , 1994, J. Comb. Theory, Ser. B.
[20] Rudolf Ahlswede,et al. Models of Multi-User Write-Efficient Memories and General Diametric Theorems , 1997, Inf. Comput..