General Edge-isoperimetric Inequalities, Part I: Information-theoretical Methods

Abstract In combinatorics we often meet two kinds of extremal problems. In one kind, optimal configurations consist of ‘objects’, which are somehow uniformly spread in the space under consideration; and in the other kind, optimal configurations consist of ‘objects’, which are somehow compressed. To the first kind belong packing, covering and coding problems, whereas diametric (especially of Erdos-Ko-Rado type), vertex- and edge-isoperimetric problems belong to the second kind.

[1]  Rudolf Ahlswede,et al.  Contributions to the geometry of hamming spaces , 1977, Discret. Math..

[2]  L. H. Harper A necessary condition on minimal cube numberings , 1967 .

[3]  Rudolf Ahlswede,et al.  Edge isoperimetric theorems for integer point arrays , 1995 .

[4]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[5]  B. Lindström,et al.  A Generalization of a Combinatorial Theorem of Macaulay , 1969 .

[6]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[7]  N. Cai,et al.  Diametric theorems in sequence spaces , 1992, Comb..

[8]  John H. Lindsey,et al.  Assignment of Numbers to Vertices , 1964 .

[9]  Daniel J. Kleitman,et al.  Configurations Maximizing the Number of Pairs of Hamming-Adjacent Lattice Points , 1971 .

[10]  ofer Fakult THE ASYMPTOTIC BEHAVIOUR OF DIAMETERS IN THE AVERAGE , 1994 .

[11]  Joseph B. Kruskal The number of s-dimensional faces in a complex: An analogy between the simplex and the cube , 1969 .

[12]  Sergiu Hart,et al.  A note on the edges of the n-cube , 1976, Discret. Math..

[13]  R. Ahlswede,et al.  Graphs with maximal number of adjacent pairs of edges , 1978 .

[14]  A. J. Bernstein,et al.  Maximally Connected Arrays on the n-Cube , 1967 .

[15]  G. F. Clements Sets of lattice points which contain a maximal number of edges , 1971 .

[16]  Béla Bollobás,et al.  Edge-isoperimetric inequalities in the grid , 1991, Comb..

[17]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[18]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[19]  Rudolf Ahlswede,et al.  The Asymptotic Behavior of Diameters in the Average , 1994, J. Comb. Theory, Ser. B.

[20]  Rudolf Ahlswede,et al.  Models of Multi-User Write-Efficient Memories and General Diametric Theorems , 1997, Inf. Comput..