The pink-eyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye.

The pink-eyed dilution (p) locus is known to control the quantity of melanin pigment made within melanocytes and retinal pigment epithelium (RPE) in the eye. We have examined the effects of several mutant allele combinations at the murine p locus on the number and morphology of melanosomes in choroidal melanocytes and RPE cells as well as on the levels of four proteins known to be present within melanosomes: tyrosinase, tyrosinase-related proteins 1 and 2 (TRP-1 and TRP-2) and lysosome-associated membrane protein-1 (LAMP-1). By electron microscopy, we observed a modest diminution in the size and number of choroidal melanosomes in pbs/pJ mice but a more dramatic decrease in the RPE in comparison with wild-type P/P mice. By contrast, a drastic reduction in melanosome size and number was present in the choroid and RPE of pun/pun and p6H/pcp mice, and in the RPE of p6H/pcp mice, melanosomes were essentially undetectable. In wild-type mice, levels of tyrosinase, TRP-1 and TRP-2 were high at birth and showed a second peak of expression at 10-14 days of age, declining to undetectable levels by 42 days. All three mutant allele combinations reduced the levels of these melanosomal proteins with the relative severity of effects being p6H/pcp>pun/pun>pbs/pJ. In the null p6H/pcp mice, levels of these proteins were extremely low at birth, no postnatal peak was observed, and levels declined to undetectable by 14 days. Levels of LAMP-1 in wild-type mice rose initially and then declined whereas in the mutant mice, levels decreased gradually from birth. Higher levels of LAMP-1 were observed in each of the mutants than in the wild-type mice at 21 days of age. Our results demonstrate that mutations at the p locus affect the size, number, shape and contents of melanosomes, implicating the p gene product in the normal biogenesis of this organelle.