Unified control technique for Z-Source inverter

Based on space-vector PWM (SVPWM) techniques, this paper proposes a new unified voltage vector of the Z-source inverter, which is composed of the traditional voltage vector and the unique boost factor of the Z-source inverter. On the basis of this unified voltage vector, a close- loop unified control technique is proposed from the viewpoint of global inverter operation, which can improve the stability of the inverter system, keep the minimum voltage stress across the switches with variable input voltage, and implement the linear control of the output voltage. In addition, only the output voltage needs to be sensed in the unified control technique, unlike the traditional control methods that use both the output and capacitor voltages. This control method is also simple and easy implementation for digital control. Furthermore, various conventional voltage-source inverters (VSI) SVPWM control strategies (include internal current control) can be applied to the unified control technique. The feasibility of the proposed control method has been verified by the simulation and experimental results.

[1]  Fang Zheng Peng Z-source inverter , 2002 .

[2]  Donald Grahame Holmes,et al.  Grid current regulation of a three-phase voltage source inverter with an LCL input filter , 2003 .

[3]  F.Z. Peng,et al.  Z-source inverter for adjustable speed drives , 2003, IEEE Power Electronics Letters.

[4]  Zhaoming Qian,et al.  A PID Control Strategy for DC-link Boost Voltage in Z-source Inverter , 2007, APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition.

[5]  Poh Chiang Loh,et al.  Modeling and design of multi-loop closed loop controller for Z-source inverter for Distributed Generation , 2006 .

[6]  F.Z. Peng,et al.  Comparison of Traditional Inverters and $Z$ -Source Inverter for Fuel Cell Vehicles , 2004, IEEE Transactions on Power Electronics.

[7]  Hong-Hee Lee,et al.  Algorithms for Controlling Both the DC Boost and AC Output Voltage of Z-Source Inverter , 2007, IEEE Transactions on Industrial Electronics.

[8]  Joachim Holtz Pulsewidth modulation-a survey , 1992, IEEE Trans. Ind. Electron..

[9]  Tae-Won Chun,et al.  Ac output voltage control with minimization of voltage stress across devices in the Z-source inverter using modified SVPWM , 2006 .

[10]  F.Z. Peng,et al.  $Z$-Source Inverter for Residential Photovoltaic Systems , 2006, IEEE Transactions on Power Electronics.

[11]  Zhaoming Qian,et al.  A Direct Peak DC-link Boost Voltage Control Strategy in Z-Source Inverter , 2007, APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition.

[12]  Liuchen Chang,et al.  Improved Current Controller Based on SVPWM for Three-phase Grid-connected Voltage Source Inverters , 2005, 2005 IEEE 36th Power Electronics Specialists Conference.

[13]  L. Chang,et al.  SVPWM-based current controller with grid harmonic compensation for three-phase grid-connected VSI , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[14]  F.Z. Peng,et al.  Maximum boost control of the Z-source inverter , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[15]  L.M. Tolbert,et al.  Maximum constant boost control of the Z-source inverter , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[16]  Poh Chiang Loh,et al.  Pulse-width modulation of Z-source inverters , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[17]  Fang Zheng Peng,et al.  Application of Z-Source Inverter for Traction Drive of Fuel Cell—Battery Hybrid Electric Vehicles , 2007, IEEE Transactions on Power Electronics.

[18]  Danwei Wang,et al.  Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters] , 2002, IEEE Trans. Ind. Electron..