Erlang loss queueing system with batch arrivals operating in a random environment

We consider the BMAP/PH/N/0 queueing system operating in a finite state space Markovian random environment. Disciplines of partial admission, complete rejection and complete admission are analyzed. The stationary distribution of the system states is calculated. The loss probability and other main performance measures of the system are derived. The Laplace-Stieltjes transform of the sojourn time distribution of accepted customers is obtained. Illustrative numerical examples are presented. They show effect of an admission strategy, a correlation in an arrival process, a variation of a service process. Poor quality of the loss probability approximation by means of more simple models utilization is illustrated.

[1]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[2]  Che Soong Kim,et al.  Lack of Invariant Property of the Erlang Loss Model in Case of MAP Input , 2005, Queueing Syst. Theory Appl..

[3]  Wolfgang Fischer,et al.  The Markov-Modulated Poisson Process (MMPP) Cookbook , 1993, Perform. Evaluation.

[4]  Daniel P. Heyman,et al.  Modeling multiple IP traffic streams with rate limits , 2003, TNET.

[5]  O. Boxma,et al.  The M/M\1 queue in a heavy‐tailed random environment , 2000 .

[6]  Qi-Ming He,et al.  Queues with marked customers , 1996, Advances in Applied Probability.

[7]  C. O'Cinneide,et al.  The M/M /∞ queue in a random environment , 1986 .

[8]  Alexander N. Dudin,et al.  Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory , 2006, Queueing Syst. Theory Appl..

[9]  Peter Purdue,et al.  The M/M/1 Queue in a Markovian Environment , 1974, Oper. Res..

[10]  Bernardo DAuria Stochastic decomposition of the M/G/infinity queue in a random environment , 2007, Oper. Res. Lett..

[11]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[12]  P. P. Bocharov,et al.  The Stationary Characteristics of the G/MSP/1/r Queueing System , 2003 .

[13]  R. Núñez Queija,et al.  An M / M / 1 queue in a semi-Markovian environment , 2001 .

[14]  Alexander N. Dudin,et al.  A BMAPPH1 queue with feedback operating in a random environment , 2005, Math. Comput. Model..

[15]  Boris Gnedenko,et al.  Introduction to queueing theory , 1968 .

[16]  A. N. Dudin Analysis of the characteristics of the data transmission process in an ISDN channel , 1988 .

[17]  Yong-Pin Zhou,et al.  A Single-Server Queue with Markov Modulated Service Times , 1999 .

[18]  Lothar Breuer From Markov jump processes to spatial queues , 2003 .

[19]  Akira Fukuda,et al.  On multiserver queues with m-phase synchronous fluctuation of traffic intensity , 1987 .

[20]  V. I. Klimenok A BMAP/SM/1 Queueing System with Hybrid Operation Mechanism , 2005 .

[21]  G. Michailidis,et al.  Queueing and scheduling in random environments , 2004, Advances in Applied Probability.

[22]  Natarajan Gautam,et al.  On Queues with Markov Modulated Service Rates , 2005, Queueing Syst. Theory Appl..

[23]  Rudesindo N ''u nez Queija Steady-state analysis of a queue with varying service rate , 1997 .

[24]  D. van Dantzig Chaînes de Markof dans les ensembles abstraits et applications aux processus avec régions absorbantes et au problème des boucles , 1955 .

[25]  Moshe Zukerman,et al.  Modeling and performance evaluation of GPRS , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[26]  B. V. Gnedenko,et al.  Introduction to queueing theory (2nd ed) , 1989 .

[27]  Tetsuya Takine Single-Server Queues with Markov-Modulated Arrivals and Service Speed , 2005, Queueing Syst. Theory Appl..

[28]  P. Naor,et al.  Queuing Problems with Heterogeneous Arrivals and Service , 1971, Oper. Res..

[29]  Christoph Lindemann,et al.  Modeling IP traffic using the batch Markovian arrival process , 2003, Perform. Evaluation.

[30]  H. Kesten,et al.  Priority in Waiting Line Problems 1). II , 1957 .

[31]  Catherine Rosenberg,et al.  Queues with slowly varying arrival and service processes , 1990 .

[32]  G. I. Falin Analysis of a buffered floating-threshold hybrid switching system , 1989 .

[33]  K. Usha The PH/M/c queue with varying environment , 1984 .

[34]  János Sztrik,et al.  On the Heterogeneous M/G/n Blocking System in a Random Environment , 1987 .

[35]  Philippe Robert,et al.  Perturbation analysis of a variable M/M/1 queue: a probabilistic approach , 2006, Advances in Applied Probability.

[36]  Micha Yadin,et al.  On queueing systems with variable service capacities , 1967 .

[37]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[38]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .