Extended multi-polarity and multi-polar-valued fuzzy sets

In this paper we introduce extended multi-polarity and discuss its relation to classification problems. We show a connection between extended multi-polarity and multi-polarity; and we define extended multi-polar aggregation operators. We also generalize the notion of bipolar-valued fuzzy sets into multi-polar-valued fuzzy sets and show their link to extended multi-polarity. Further we show that the same link is present between reduced form of multi-polar (bipolar)-valued fuzzy sets and multi-polar aggregation (bipolar aggregation). Several examples are also given including extended multi-polar t-norms.

[1]  Christophe Labreuche,et al.  Bipolarization of posets and natural interpolation , 2008, ArXiv.

[2]  Christophe Labreuche,et al.  Capacities on lattices and k-ary capacities , 2003, EUSFLAT Conf..

[3]  E. Pap Null-Additive Set Functions , 1995 .

[4]  Eiichiro Takahagi Multiple-Output Choquet Integral Models and Their Applications in Classification Methods , 2011, NL-MUA.

[5]  Jonathan M. Garibaldi,et al.  Context modelling in fuzzy systems , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[6]  D. Denneberg Non-additive measure and integral , 1994 .

[7]  Radko Mesiar,et al.  The balancing Choquet integral , 2010, Fuzzy Sets Syst..

[8]  Khurshid Ahmad,et al.  Multi-polar Aggregation , 2012, IPMU.

[9]  G. Choquet Theory of capacities , 1954 .

[10]  Didier Dubois,et al.  An overview of the asymmetric bipolar representation of positive and negative information in possibility theory , 2009, Fuzzy Sets Syst..

[11]  M. Grabisch,et al.  Bi-capacities for decision making on bipolar scales , 2002 .

[12]  Michel Grabisch,et al.  The Möbius transform on symmetric ordered structures and its application to capacities on finite sets , 2004, Discret. Math..

[13]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[14]  Eiichiro Takahagi Choquet-Integral-Based Evaluations by Fuzzy Rules: Methods for Developing Fuzzy Rule Tables on the Basis of Weights and Interaction Degrees , 2010, IPMU.

[15]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[16]  Radko Mesiar,et al.  New construction methods for aggregation operators. , 2000 .

[17]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[18]  R. Mesiar,et al.  ”Aggregation Functions”, Cambridge University Press , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[19]  Lulu Zhang,et al.  YinYang bipolar logic and bipolar fuzzy logic , 2004, Inf. Sci..

[20]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[21]  Young Bae Jun,et al.  BIPOLAR FUZZY HYPER BCK-IDEALS IN HYPER BCK-ALGEBRAS , 2011 .

[22]  Khurshid Ahmad,et al.  Multi-polar Choquet integral , 2013, Fuzzy Sets Syst..

[23]  D. Dubois,et al.  An introduction to bipolar representations of information and preference , 2008 .

[24]  Michel Grabisch,et al.  The Quest For Rings On Bipolar Scales , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Wen-Ran Zhang,et al.  YinYang bipolar T-norms and T-conorms as granular neurological operators , 2006, 2006 IEEE International Conference on Granular Computing.

[26]  Ronald R. Yager,et al.  Bipolar aggregation using the Uninorms , 2011, Fuzzy Optim. Decis. Mak..

[27]  Michel Grabisch,et al.  The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..

[28]  Gaspar Mayor,et al.  Aggregation Operators , 2002 .

[29]  Keon-Myung Lee,et al.  Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets , 2004 .