Response to: Commentary on: Bright et al. (2018) Internal validation of STRmix™ - A multi laboratory response to PCAST, Forensic Science International: Genetics, 34: 11-24.

[1]  Duncan A. Taylor,et al.  Testing whether stutter and low-level DNA peaks are additive. , 2019, Forensic science international. Genetics.

[2]  Titia Sijen,et al.  An assessment of the performance of the probabilistic genotyping software EuroForMix: Trends in likelihood ratios and analysis of Type I & II errors. , 2019, Forensic science international. Genetics.

[3]  J. Lefebvre,et al.  STRmix™ put to the test: 300 000 non-contributor profiles compared to four-contributor DNA mixtures and the impact of replicates. , 2019, Forensic science international. Genetics.

[4]  Jo-Anne Bright,et al.  Interpreting a major component from a mixed DNA profile with an unknown number of minor contributors. , 2019, Forensic science international. Genetics.

[5]  J. Chaseling,et al.  Commentary on: Bright et al. (2018) Internal validation of STRmix™ - a multi laboratory response to PCAST, Forensic Science International: Genetics, 34: 11-24. , 2019, Forensic science international. Genetics.

[6]  Duncan A. Taylor,et al.  STRmix™ collaborative exercise on DNA mixture interpretation. , 2019, Forensic science international. Genetics.

[7]  Jo-Anne Bright,et al.  Probabilistic genotyping software: An overview. , 2019, Forensic science international. Genetics.

[8]  Jo-Anne Bright,et al.  The effect of varying the number of contributors in the prosecution and alternate propositions. , 2019, Forensic science international. Genetics.

[9]  E. Alladio,et al.  DNA mixtures interpretation - A proof-of-concept multi-software comparison highlighting different probabilistic methods' performances on challenging samples. , 2018, Forensic science international. Genetics.

[10]  Bruce Budowle,et al.  NIST interlaboratory studies involving DNA mixtures (MIX13): A modern analysis. , 2018, Forensic science international. Genetics.

[11]  K Slooten,et al.  Contributors are a nuisance (parameter) for DNA mixture evidence evaluation. , 2018, Forensic science international. Genetics.

[12]  John M Butler,et al.  NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): Variation observed and lessons learned. , 2018, Forensic science international. Genetics.

[13]  Peter Gill,et al.  DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence - Guidelines highlighting the importance of propositions: Part I: evaluation of DNA profiling comparisons given (sub-) source propositions. , 2018, Forensic science international. Genetics.

[14]  P A Barrio,et al.  GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06). Reporting conclusions: Results and evaluation. , 2018, Forensic science international. Genetics.

[15]  Duncan A. Taylor,et al.  Internal validation of STRmix™ - A multi laboratory response to PCAST. , 2018, Forensic science international. Genetics.

[16]  Jo-Anne Bright,et al.  Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles. , 2017, Forensic science international. Genetics.

[17]  Duncan A. Taylor,et al.  Importance sampling allows Hd true tests of highly discriminating DNA profiles. , 2017, Forensic science international. Genetics.

[18]  Øyvind Bleka,et al.  A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles. , 2016, Forensic science international. Genetics.

[19]  J Buckleton,et al.  DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications. , 2016, Forensic science international. Genetics.

[20]  Christophe Champod,et al.  Using sensitivity analyses in Bayesian Networks to highlight the impact of data paucity and direct future analyses: a contribution to the debate on measuring and reporting the precision of likelihood ratios. , 2016, Science & justice : journal of the Forensic Science Society.

[21]  F Taroni,et al.  Reframing the debate: A question of probability, not of likelihood ratio. , 2016, Science & justice : journal of the Forensic Science Society.

[22]  Geoffrey Stewart Morrison,et al.  Special issue on measuring and reporting the precision of forensic likelihood ratios: Introduction to the debate. , 2016, Science & justice : journal of the Forensic Science Society.

[23]  James M Curran,et al.  Admitting to uncertainty in the LR. , 2016, Science & justice : journal of the Forensic Science Society.

[24]  Geoffrey Stewart Morrison,et al.  What should a forensic practitioner's likelihood ratio be? , 2016, Science & justice : journal of the Forensic Science Society.

[25]  Cedric Neumann,et al.  An argument against presenting interval quantifications as a surrogate for the value of evidence. , 2016, Science & justice : journal of the Forensic Science Society.

[26]  Charles E H Berger,et al.  The LR does not exist. , 2016, Science & justice : journal of the Forensic Science Society.

[27]  Ivo Alberink,et al.  Posterior distributions for likelihood ratios in forensic science. , 2016, Science & justice : journal of the Forensic Science Society.

[28]  T. Sijen,et al.  The effect of varying the number of contributors on likelihood ratios for complex DNA mixtures. , 2015, Forensic science international. Genetics.

[29]  S. Greenspoon,et al.  Establishing the Limits of TrueAllele® Casework: A Validation Study , 2015, Journal of forensic sciences.

[30]  Duncan Taylor,et al.  Testing likelihood ratios produced from complex DNA profiles. , 2015, Forensic science international. Genetics.

[31]  Duncan Taylor,et al.  Do low template DNA profiles have useful quantitative data? , 2015, Forensic science international. Genetics.

[32]  Duncan Taylor,et al.  A series of recommended tests when validating probabilistic DNA profile interpretation software. , 2015, Forensic science international. Genetics.

[33]  Jo-Anne Bright,et al.  The variability in likelihood ratios due to different mechanisms. , 2015, Forensic science international. Genetics.

[34]  Duncan Taylor,et al.  Interpreting forensic DNA profiling evidence without specifying the number of contributors. , 2014, Forensic science international. Genetics.

[35]  Jo-Anne Bright,et al.  Comparison of the performance of different models for the interpretation of low level mixed DNA profiles , 2014, Electrophoresis.

[36]  Jo-Anne Bright,et al.  The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation. , 2014, Forensic science international. Genetics.

[37]  J Buckleton,et al.  An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations. , 2014, Forensic science international. Genetics.

[38]  Duncan Taylor,et al.  Using continuous DNA interpretation methods to revisit likelihood ratio behaviour. , 2014, Forensic science international. Genetics.

[39]  P Gill,et al.  Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles. , 2014, Forensic science international. Genetics.

[40]  James Curran,et al.  Searching mixed DNA profiles directly against profile databases. , 2014, Forensic science international. Genetics.

[41]  Joaquin Gonzalez-Rodriguez,et al.  Reliable support: Measuring calibration of likelihood ratios. , 2013, Forensic science international.

[42]  J. Curran An introduction to Bayesian credible intervals for sampling error in DNA profiles , 2005 .

[43]  James M Curran,et al.  What is the magnitude of the subpopulation effect? , 2003, Forensic science international.

[44]  D J Balding,et al.  DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. , 1994, Forensic science international.