An efficient bit allocation for compressing normal meshes with an error-driven quantization

We propose a new wavelet compression algorithm based on the rate-distortion optimization for densely sampled triangular meshes. Exploiting the normal remesher of Guskov et al., the proposed algorithm includes a wavelet transform and an original bit allocation optimizing the quantization of the wavelet coefficients. The allocation process minimizes the reconstruction error for a given bit budget. As distortion measure, we use the mean square error of the normal mesh quantization, expressed according to the quantization error of each subband. We show that this metric is a suitable criterion to evaluate the reconstruction error, i.e., the geometric distance between the input mesh and the quantized normal one. Moreover, to design a fast bit allocation, we propose a model-based approach, depending on distribution of the wavelet coefficients. Compared to the state-of-the-art methods for normal meshes, our algorithm provides improvements in coding performance, up to +2.5 dB compared to the original zerotree coder.

[1]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[2]  Jarek Rossignac,et al.  Optimal bit allocation in compressed 3D models , 1999, Comput. Geom..

[3]  Richard G. Baraniuk,et al.  Geometry Compression of Normal Meshes Using Rate-Distortion Algorithms , 2003, Symposium on Geometry Processing.

[4]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[5]  Marc Antonini,et al.  3D multiresolution context-based coding for geometry compression , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[7]  C.-C. Jay Kuo,et al.  Progressive compression of 3D graphic models , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[8]  Mike M. Chow,et al.  Optimized geometry compression for real-time rendering , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[9]  Marc Antonini,et al.  Multiresolution 3D mesh compression , 2002, Proceedings. International Conference on Image Processing.

[10]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[11]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[12]  Davis King,et al.  Optimal Bit Allocation in 3D Compression , 1999 .

[13]  Pierre Alliez,et al.  Recent advances in compression of 3D meshes , 2005, 2005 13th European Signal Processing Conference.

[14]  Tom Appolloni,et al.  Proceedings of the 29th annual conference on Computer graphics and interactive techniques , 2002, SIGGRAPH.

[15]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[16]  M. Antonini,et al.  Mean Square Error For Biorthogonal M-Channel Wavelet Coder , 2005 .

[17]  Bryan Usevitch,et al.  Optimal bit allocation for biorthogonal wavelet coding , 1996, Proceedings of Data Compression Conference - DCC '96.

[18]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[19]  Michael W. Marcellin,et al.  Universal trellis coded quantization , 1999, IEEE Trans. Image Process..

[20]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.

[21]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[22]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[23]  Sang Uk Lee,et al.  Normal mesh compression based on rate-distortion optimization , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[24]  Marc Antonini,et al.  Weighted bit allocation for multiresolution 3D mesh geometry compression , 2003, Visual Communications and Image Processing.

[25]  Marc Antonini,et al.  MSE approximation for model-based compression of multiresolution semiregular meshes , 2005, 2005 13th European Signal Processing Conference.

[26]  David P. Luebke,et al.  Perceptually-Driven Simplification for Interactive Rendering , 2001, Rendering Techniques.

[27]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[28]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[29]  A. Khodakovsky Normal Mesh Compression , 2000 .

[30]  Hans Hagen,et al.  Proceedings of the 8th conference on Visualization '97 , 1997 .

[31]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[32]  Michael T. Orchard,et al.  Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework , 1997, Proceedings DCC '97. Data Compression Conference.

[33]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[34]  Marc Levoy,et al.  The digital Michelangelo project , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[35]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[36]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.