Analog Signal Processing Circuits Using Floating Gate MOS Transistors

Low voltage non-linear computational circuits useful for analog VLSI signal processing applications based on floating gate MOS transistors (FGMOSFETs) are presented. The FGMOS transistors operate in the saturation region. The variable equivalent threshold voltage (VT) of the FGMOS transistor is exploited in such a way to transform it to a simple MOSFET of zero VT. A bias circuit using a conventional VT extractor circuit makes the transformation. The transistor behaves as a simple squaring element in this case. A four-quadrant multiplier and a Euclidean norm calculator circuit are presented as applications. The most important advantages of the four-quadrant multiplier are rail-to-rail dynamic input range, low distortion and very good linearity. The main advantages of the Euclidean norm calculator circuit are unipolar supply voltage, linear expansion requiring only one FGMOS per additional input and very good linearity. SPICE simulation results verify the accuracy of the circuits. Index Terms – Floating gate MOSFETs, VT cancellation circuit, four-quadrant multiplier, Euclidean norm calculator circuit, analog VLSI signal processing.

[1]  S. Siskos,et al.  Subthreshold behaviour modelling of FGMOS transistors using the ACM and the BSIM3V3 models , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).

[2]  Cheng-Chieh Chang,et al.  Low-Voltage BiCMOS Four-Quadrant Multiplier and Squarer , 1999 .

[3]  J. Ramirez-Angulo,et al.  Modeling multiple-input floating-gate transistors for analog signal processing , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[4]  Stylianos Siskos,et al.  Analogue squarer and multiplier based on floating-gate MOS transistors , 1998 .

[5]  Stilianos Siskos,et al.  Design of voltage-mode and current-mode computational circuits using floating-gate MOS transistors , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Shen-Iuan Liu,et al.  CMOS squarer and four-quadrant multiplier , 1995 .

[7]  Esther Rodriguez-Villegas,et al.  Solution to trapped charge in FGMOS transistors , 2003 .

[8]  Terri S. Fiez,et al.  Analog VLSI : signal and information processing , 1994 .

[9]  Gaetano Palumbo,et al.  1.5 V power supply CMOS voltage squarer , 1997 .

[10]  S.-I. Analogue squarer and multiplier based on MOS square-law characteristic , 2004 .

[11]  Mohammed Ismail,et al.  High performance analog VLSI computational circuits , 1998 .

[12]  Stylianos Siskos,et al.  Analogue computational circuits based on floating-gate transistors , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[13]  Koichi Tanno,et al.  A 1-V, 1-V~p~p Input Range, Four-Quadrant Analog Multiplier Using Neuron-MOS Transistors , 1999 .

[14]  J.S. Pena-Finol,et al.  A MOS four-quadrant analog multiplier using the quarter-square technique , 1987 .

[15]  Trudi-Heleen Joubert,et al.  Four quadrant analogue CMOS multiplier using capacitively coupled dual-gate transistors , 1996 .

[16]  Eric A. Vittoz,et al.  Analog VLSI signal processing: Why, where, and how? , 1994, J. VLSI Signal Process..

[17]  Tadashi Shibata,et al.  A functional MOS transistor featuring gate-level weighted sum and threshold operations , 1992 .

[18]  Chee Yee Kwok,et al.  A novel multi-input floating-gate MOS four-quadrant analog multiplier , 1996, IEEE J. Solid State Circuits.