Antioxidant enzymes efficiently control leaf and root cell damage in young Euterpe oleracea plants exposed to waterlogging

[1]  C. L. Verma,et al.  Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding , 2014 .

[2]  A. Lobato,et al.  Tolerance to waterlogging in young Euterpe oleracea plants , 2014, Photosynthetica.

[3]  M. Chiang,et al.  Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses , 2013 .

[4]  A. Gupta,et al.  Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short-term waterlogging. , 2012, Indian journal of experimental biology.

[5]  D. Oosterhuis,et al.  Physiological Mechanism of Nitrogen Mediating Cotton (Gossypium hirsutum L.) Seedlings Growth under Water-Stress Conditions , 2012 .

[6]  M. Ashraf Waterlogging stress in plants: A review , 2012 .

[7]  D. Tan,et al.  Water relations, nitrogen compounds and enzyme activities in leaf and root of young Yellow Lapacho (Tabebuia serratifolia) plants subjected to flooding , 2012 .

[8]  A. Gupta,et al.  Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging. , 2011, Indian journal of biochemistry & biophysics.

[9]  Daniele Giancristofaro Cortezi,et al.  Efeito de alagamento e de aplicação de fitorreguladores na brotação de Guazuma ulmifolia (Malvaceae) e de Sesbania virgata (Fabaceae) , 2011 .

[10]  M. Vasconcellos,et al.  Caracterização físico-química do suco de açaí de Euterpe precatoria Mart. oriundo de diferentes ecossistemas amazônicos , 2011 .

[11]  N. Tuteja,et al.  Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. , 2010, Plant physiology and biochemistry : PPB.

[12]  J. D. Alves,et al.  Atividade do sistema antioxidante e desenvolvimento de aerênquima em raízes de milho 'Saracura' , 2010 .

[13]  N. Fernández-García,et al.  A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots , 2010 .

[14]  M. López-Climent,et al.  Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage. , 2009, Journal of plant physiology.

[15]  R. Sairam,et al.  Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes , 2009, Biologia Plantarum.

[16]  L. Voesenek,et al.  Flooding stress: acclimations and genetic diversity. , 2008, Annual review of plant biology.

[17]  A. U. O. S. Srur,et al.  Valor nutricional da polpa de açaí (Euterpe oleracea Mart) liofilizada , 2008 .

[18]  Andreas Hansson,et al.  Oxidative modifications to cellular components in plants. , 2007, Annual review of plant biology.

[19]  Y. Zou,et al.  Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. , 2006, Journal of plant physiology.

[20]  S. Kopriva,et al.  Influence of anoxia on whole plant sulphur nutrition of flooding‐tolerant poplar (Populus tremula × P. alba) , 2005 .

[21]  Kunisuke Tanaka,et al.  Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts , 2004 .

[22]  F. Gomes,et al.  Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding , 2003 .

[23]  F. O. Bobbio,et al.  STABILITY AND STABILIZATION OF THE ANTHOCYANINS FROM EUTERPE OLERACEA MART , 2002 .

[24]  V. Velikova,et al.  Oxidative stress and some antioxidant systems in acid rain-treated bean plants Protective role of exogenous polyamines , 2000 .

[25]  J. I. Druzian,et al.  Identificação e quantificação das antocianinas do fruto do açaizeiro (Euterpe oleracea) Mart , 2000 .

[26]  W. Stepniewski,et al.  The influence of waterlogging at different temperatures on penetration depth and porosity of roots and on stomatal diffusive resistance of pea and maize seedlings , 1999, Acta Physiologiae Plantarum.

[27]  A. Aziz,et al.  Osmotic Stress Induced Changes in Lipid Composition and Peroxidation in Leaf Discs of Brassica napus L. , 1998 .

[28]  M. Gong,et al.  Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems , 1998 .

[29]  Malcolm C. Drew,et al.  OXYGEN DEFICIENCY AND ROOT METABOLISM: Injury and Acclimation Under Hypoxia and Anoxia. , 1997, Annual review of plant physiology and plant molecular biology.

[30]  H. Marschner,et al.  Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. , 1992, Plant physiology.

[31]  W. Horst,et al.  Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max) , 1991 .

[32]  E. Havir,et al.  Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. , 1987, Plant physiology.

[33]  G. J. Mitchell,et al.  Principles and procedures of statistics: A biometrical approach , 1981 .

[34]  K. Asada,et al.  Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts , 1981 .

[35]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[36]  D. R. Hoagland,et al.  The Water-Culture Method for Growing Plants Without Soil , 2018 .