Effects of precursor molar ratio and annealing temperature on structure and photoluminescence characteristics of Mn-doped ZnS quantum dots

[1]  Thanh-Phuong Nguyen,et al.  Investigations on photoluminescence enhancement of poly(vinyl alcohol)-encapsulated Mn-doped ZnS quantum dots , 2017 .

[2]  N. Bansal,et al.  Effect of Mn2+ and Cu2+ co-doping on structural and luminescent properties of ZnS nanoparticles , 2017 .

[3]  Ya-xian Zhu,et al.  Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb(2+) ions. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  S. Acharya,et al.  Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  B. S. Swain,et al.  The role of ammonization on chemical bonding and optical properties of nickel-catalyzed gallium nitride nanowire , 2016 .

[6]  M. Sarcar,et al.  Studies on photo- and thermal stability of PVA-encapsulated Mn-doped ZnS nanoparticles , 2016 .

[7]  Zhifeng Zhang,et al.  Facile and sensitive detection of protamine by enhanced room-temperature phosphorescence of Mn-doped ZnS quantum dots. , 2015, Analytical biochemistry.

[8]  H. Rajabi,et al.  Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application for dye decolorization , 2015 .

[9]  Wenyong Wang,et al.  Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells , 2015 .

[10]  C. Tiwary,et al.  Effect of thermal annealing on dual photoluminescence emission characteristics of chemically synthesized uncapped Mn2+ doped ZnS quantum dots , 2014 .

[11]  Hongji Li,et al.  Composites of surface imprinting polymer capped Mn-doped ZnS quantum dots for room-temperature phosphorescence probing of 2,4,5-trichlorophenol , 2014 .

[12]  J. Lalevée,et al.  Aqueous synthesis of highly luminescent glutathione-capped Mn²⁺-doped ZnS quantum dots. , 2014, Materials science & engineering. C, Materials for biological applications.

[13]  Xinghua Li,et al.  Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism , 2014 .

[14]  R. Saravanan,et al.  Mn2+ ion influenced optical and photocatalytic behaviour of Mn–ZnS quantum dots prepared by a microwave assisted technique , 2014 .

[15]  H. Naik,et al.  Synthesis and photoluminescence enhancement of PVA capped Mn2+ doped ZnS nanoparticles and observation of tunable dual emission: A new approach , 2014 .

[16]  S. Anandan,et al.  Sonochemical Synthesis of Hollow Copper Doped Zinc Sulfide Nanostructures: Optical and Catalytic Properties for Visible Light Assisted Photosplitting of Water , 2014 .

[17]  M. Dramićanin,et al.  Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route , 2014 .

[18]  Pratibha Sharma,et al.  Parametric optimisation of core–shell ZnS:Mn/ZnS nanoparticles prepared by ultrasound-controlled wet chemical route , 2014 .

[19]  Penghui Zhang,et al.  Highly luminescent glutathione-capped ZnS : Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface† , 2013 .

[20]  Rita John,et al.  Effects of annealing temperature on structure/morphology and photoluminescence properties of Mn-doped ZnS nanoparticles , 2013 .

[21]  J. Lalevée,et al.  Aqueous route to color-tunable Mn-doped ZnS quantum dots , 2013 .

[22]  R. Farnood,et al.  Synthesis and inkjet printing of aqueous ZnS:Mn nanoparticles , 2013 .

[23]  C. Tiwary,et al.  Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination , 2013 .

[24]  Lavinia Balan,et al.  Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging. , 2013, Journal of materials chemistry. B.

[25]  S. Basu,et al.  Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications , 2013 .

[26]  B. Dole,et al.  Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles , 2012 .

[27]  Gwi-yeol Kim,et al.  Enhanced luminescence related to transparent conductive oxide in ZnS-based EL device fabricated by screen printing method , 2012 .

[28]  J. Lulek,et al.  Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media , 2012 .

[29]  Mohini Sain,et al.  Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder , 2012 .

[30]  G. Murugadoss Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method , 2011 .

[31]  L. Nistor,et al.  Local structure at Mn2+ ions in vacuum annealed small cubic ZnS nanocrystals self-assembled into a mesoporous structure. , 2011, Journal of nanoscience and nanotechnology.

[32]  L. Balan,et al.  Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. , 2011, Acta biomaterialia.

[33]  A. K. Rath,et al.  Mn-doped nanocrystals in light-emitting diodes: Energy-transfer to obtain electroluminescence from quantum dots , 2010 .

[34]  Sunil Kumar,et al.  Study of energy transfer from capping agents to intrinsic vacancies/defects in passivated ZnS nanoparticles , 2010 .

[35]  Mohammadreza Tahriri,et al.  Controllable synthesis, characterization and optical properties of ZnS:Mn nanoparticles as a novel biosensor , 2009 .

[36]  H. R. Pouretedal,et al.  Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. , 2009, Journal of hazardous materials.

[37]  H. Okamoto,et al.  An electroluminescence device for printable electronics using coprecipitated ZnS:Mn nanocrystal ink , 2009, Nanotechnology.

[38]  Fangying Wu,et al.  Fluorescent Method for the Determination of Sulfide Anion with ZnS:Mn Quantum Dots , 2009, Journal of Fluorescence.

[39]  Chong Xiao,et al.  Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots , 2008 .

[40]  Yanpeng Zhang,et al.  Fluorescence lifetime of Mn-doped ZnSe quantum dots with size dependence , 2008 .

[41]  Fei Teng,et al.  Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation , 2008 .

[42]  K. Chattopadhyay,et al.  Photoluminescence and field emission properties of ZnS:Mn nanoparticles synthesized by rf-magnetron sputtering technique , 2007 .

[43]  M. K. Naskar,et al.  Synthesis and characterization of PVP-encapsulated ZnS nanoparticles , 2006 .

[44]  A. Kovalenko,et al.  Mechanism of photoluminescence excitation of Mn2+ ions in ZnS crystals , 2005 .

[45]  W. Peng,et al.  Optical and magnetic properties of ZnS nanoparticles doped with Mn2 , 2005 .

[46]  H. Makino,et al.  Enhancement of Mn luminescence in ZnS:Mn multi-quantum-well structures , 2003 .

[47]  P. Holloway,et al.  Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals , 2003 .

[48]  W. H. Armstrong,et al.  FTIR spectra and normal-mode analysis of a tetranuclear manganese adamantane-like complex in two electrochemically prepared oxidation states: relevance to the oxygen-evolving complex of photosystem II. , 2002, Journal of the American Chemical Society.

[49]  A. Kovalenko,et al.  Spectra of Manganese Emission Centers in Zinc Sulfide , 2002 .

[50]  J. F. Suyver,et al.  Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn^(2+) , 2001 .

[51]  N. Kotov,et al.  Crystal field, phonon coupling and emission shift of Mn2+ in ZnS: Mn nanoparticles , 2001 .

[52]  H. Okamoto,et al.  Structural and luminescence properties of nanostructured ZnS:Mn , 2000 .

[53]  Y. Masumoto,et al.  Comparison of energy levels of Mn2+ in nanosized- and bulk-ZnS crystals , 2000 .

[54]  I. M. Chernenko,et al.  Excitation spectra and structure of luminescence centers of manganese ions in single crystals of zinc sulfide , 2000 .

[55]  S. Qadri,et al.  SIZE-INDUCED TRANSITION-TEMPERATURE REDUCTION IN NANOPARTICLES OF ZNS , 1999 .

[56]  M. Senna,et al.  EPR STUDY OF MN2+ ELECTRONIC STATES FOR THE NANOSIZED ZNS:MN POWDER MODIFIED BY ACRYLIC ACID , 1997 .

[57]  S. Qadri,et al.  Evidence of strain and lattice distortion in lead sulfide nanocrystallites , 1997 .

[58]  Catherine J. Murphy,et al.  Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2 , 1996 .

[59]  B. Ju,et al.  Decrease of the number of the isolated emission center Mn2+ in an aged ZnS: Mn electroluminescent device , 1995 .

[60]  Huang,et al.  Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. , 1994, Physical review. B, Condensed matter.

[61]  Gallagher,et al.  Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.

[62]  G. Nikolov,et al.  Geometry optimization of Zn1−xMnxS structures by SCF CNDO and INDO methods , 1990 .

[63]  J. Allen,et al.  Absorption from the excited state in ZnS:Mn , 1989 .