Diffractive slit patterns for focusing surface plasmon polaritons.

We propose a design method of diffractive slit patterns for focusing surface plasmon polaritons. A scalar model of surface plasmon polariton excitation and interference is adopted, based on which the design method of diffractive slit patterns is built up. The validity of the proposed scalar model-based design is discussed through the comparison of the simulation results of the scalar model and the rigorous three-dimensional vectorial electromagnetic model using the rigorous coupled wave analysis.

[1]  Darrell J. Armstrong,et al.  Parametric amplification and oscillation with walkoff-compensating crystals , 1997 .

[2]  Xiang Zhang,et al.  Tuning the focus of a plasmonic lens by the incident angle , 2006 .

[3]  Byoungho Lee,et al.  Focusing properties of surface plasmon polariton floating dielectric lenses. , 2008, Optics express.

[4]  Mark L Brongersma,et al.  Surface plasmon polariton analogue to Young's double-slit experiment. , 2007, Nature nanotechnology.

[5]  F. Krausz,et al.  High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier , 2005 .

[6]  I. Jovanovic,et al.  Optical Parametric Chirped-Pulse Amplification in Periodically-Poled KTiOPO4 at 1053 nm , 2003 .

[7]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[8]  Byoungho Lee,et al.  Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography. , 2008, Applied optics.

[9]  M. Fejer,et al.  Efficiency-enhanced soliton optical parametric amplifier , 2002 .

[10]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[11]  N. N. Rukavishnikov,et al.  200 TW 45 fs laser based on optical parametric chirped pulse amplification , 2006 .

[12]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[13]  Koichi Yamakawa,et al.  Numerical analysis of optical parametric chirped pulse amplification with time delay. , 2003, Optics express.

[14]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[15]  Y. Izawa,et al.  High-power and high-contrast optical parametric chirped pulse amplification in β-BaB 2 O 4 crystal , 2003 .

[16]  Deanna M. Pennington,et al.  Angular effects and beam quality in optical parametric amplification , 2001 .

[17]  G. Mourou,et al.  Zettawatt-exawatt lasers and their applications in ultrastrong-field physics , 2002 .

[18]  P. Berini,et al.  Long-range surface plasmons on ultrathin membranes. , 2007, Nano letters.

[19]  J P Korterik,et al.  Creating focused plasmons by noncollinear phasematching on functional gratings. , 2005, Nano letters.

[20]  Darrell J. Armstrong,et al.  Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals , 1998 .

[21]  Alexandra Boltasseva,et al.  Surface plasmon polariton beam focusing with parabolic nanoparticle chains. , 2007, Optics express.

[22]  S. Wen,et al.  Femtosecond optical parametric amplification with dispersion precompensation , 2006 .

[23]  Heyuan Zhu,et al.  Analysis of beam-quality degradation in nonlinear frequency conversion , 2002 .

[24]  K. Tanaka,et al.  Control of amplified optical parametric fluorescence for hybrid chirped-pulse amplification , 2006 .

[25]  J. Zuegel,et al.  Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality. , 2003, Optics express.

[26]  Anthony E. Siegman,et al.  Defining the effective radius of curvature for a nonideal optical beam , 1991 .

[27]  C. Dorrer,et al.  High-contrast optical-parametric amplifier as a front end of high-power laser systems. , 2007, Optics letters.

[28]  Kuipers,et al.  Phase modulation in second-order nonlinear-optical processes. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  Ian N. Ross,et al.  The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers , 1997 .

[30]  D Neely,et al.  35 J broadband femtosecond optical parametric chirped pulse amplification system. , 2006, Optics letters.

[31]  J. Zuegel,et al.  High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses. , 2003, Optics letters.

[32]  P. Matousek,et al.  Evaluation of an ultrabroadband high-gain amplification technique for chirped pulse amplification facilities. , 1999, Applied optics.

[33]  Mark S. Bowers,et al.  Phase distortions in sum- and difference-frequency mixing in crystals , 1995 .

[34]  Ferenc Krausz,et al.  90 mJ parametric chirped pulse amplification of 10 fs pulses. , 2006, Optics express.

[35]  Yuriy Stepanenko,et al.  High-gain multipass noncollinear optical parametric chirped pulse amplifier , 2005 .

[36]  Y. Fainman,et al.  Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[37]  M M Fejer,et al.  High-energy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier. , 1998, Optics letters.

[38]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[39]  J. Biegert,et al.  Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams. , 2004, Optics express.

[40]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[41]  Karoly Osvay,et al.  Analysis and optimization of optical parametric chirped pulse amplification , 2002 .