Sparse and Low-Rank Decomposition for Automatic Target Detection in Hyperspectral Imagery

Given a target prior information, our goal is to propose a method for automatically separating targets of interests from the background in hyperspectral imagery. More precisely, we regard the given hyperspectral image (HSI) as being made up of the sum of low-rank background HSI and a sparse target HSI that contains the targets based on a pre-learned target dictionary constructed from some online spectral libraries. Based on the proposed method, two strategies are briefly outlined and evaluated to realize the target detection on both synthetic and real experiments.

[1]  Trac D. Tran,et al.  Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[2]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.

[3]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[5]  Frédéric Pascal,et al.  Anomaly detection and estimation in hyperspectral imaging using Random Matrix Theory tools , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[6]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[7]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[8]  A. Hero,et al.  Robust shrinkage estimation of high-dimensional covariance matrices , 2010 .

[9]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[10]  L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[11]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[12]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[13]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[15]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[16]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[17]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[18]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[19]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[20]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[22]  Jun Qin,et al.  Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary , 2016, IEEE Signal Processing Letters.

[23]  Dacheng Tao,et al.  Manifold elastic net for sparse learning , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[24]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[25]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[26]  Daniel P. W. Ellis,et al.  Speech enhancement by sparse, low-rank, and dictionary spectrogram decomposition , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[27]  W. Marsden I and J , 2012 .

[28]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[29]  Fulvio Gini,et al.  Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter , 2002, Signal Process..

[30]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[31]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[32]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[33]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[34]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[35]  D. Manolakis,et al.  Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms , 2016 .

[36]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[37]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[38]  Joana Frontera-Pons,et al.  False-alarm regulation for target detection in hyperspectral imaging , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[39]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[40]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[42]  Jocelyn Chanussot,et al.  Robust anomaly detection in Hyperspectral Imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[43]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[44]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..