General graph pebbling

Graph pebbling is the study of whether pebbles from one set of vertices can be moved to another while pebbles are lost in the process. A number of variations on the theme have been presented over the years. In this paper we provide a common framework for studying them all, and present the main techniques and results. Some new variations are introduced as well and open problems are highlighted.

[1]  Andrzej Czygrinow,et al.  A Note on Graph Pebbling , 2002, Graphs Comb..

[2]  Nathaniel G. Watson The Complexity of Pebbling and Cover Pebbling , 2005 .

[3]  Rongquan Feng,et al.  Pebbling numbers of some graphs , 2002 .

[4]  Jonas Sjöstrand The Cover Pebbling Theorem , 2005, Electron. J. Comb..

[5]  Jonas Sjostrand The cover pebbling theorem , 2004 .

[6]  Anant P. Godbole,et al.  Domination Cover Pebbling: Graph Families , 2005 .

[7]  Hung-Lin Fu,et al.  THE OPTIMAL PEBBLING NUMBER OF THE CATERPILLAR , 2009 .

[8]  Fan Chung Pebbling in hypercubes , 1989 .

[9]  David S. Herscovici,et al.  The pebbling number of C5 × C5 , 1998, Discret. Math..

[10]  Glenn H. Hurlbert,et al.  Cover Pebbling Hypercubes , 2004 .

[11]  Roger Crocker,et al.  A theorem in additive number theory , 1969 .

[12]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[13]  Lior Pachter,et al.  On pebbling graphs , 1995 .

[14]  Weidong Gao,et al.  On the structure of sequences with forbidden zero-sum subsequences , 2003 .

[15]  Hung-Lin Fu,et al.  The optimal pebbling number of the complete m-ary tree , 2000, Discret. Math..

[16]  Adam Wierman,et al.  An improved upper bound for the pebbling threshold of the n-path , 2004, Discret. Math..

[17]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[19]  David S. Herscovici Graham's pebbling conjecture on products of many cycles , 2008, Discret. Math..

[20]  Glenn Hurlbert Recent Progress in Graph Pebbling , 2005 .

[21]  Andrzej Czygrinow,et al.  Girth, Pebbling, and Grid Thresholds , 2006, SIAM J. Discret. Math..

[22]  Kevin G. Milans,et al.  The Complexity of Graph Pebbling , 2006, SIAM J. Discret. Math..

[23]  Annalies Vuong,et al.  Conditions for Weighted Cover Pebbling of Graphs , 2004 .

[24]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .

[25]  G. Hurlbert,et al.  On Pebbling Graphs by Their Blocks , 2008, 0811.3238.

[26]  Zsolt Tuza,et al.  The cover pebbling number of graphs , 2005, Discret. Math..

[27]  T. Szele On pseudoprimes and Carmichael numbers . Dedicated to the memory of my friend , 2004 .

[28]  D. West Introduction to Graph Theory , 1995 .

[29]  B. Lindström,et al.  A Generalization of a Combinatorial Theorem of Macaulay , 1969 .

[30]  Noga Alon,et al.  Regular subgraphs of almost regular graphs , 1984, J. Comb. Theory, Ser. B.

[31]  Andrzej Czygrinow,et al.  Pebbling in dense graphs , 2003, Australas. J Comb..

[32]  Tristan Denley On a Result of Lemke and Kleitman , 1997, Comb. Probab. Comput..

[33]  Andrzej Czygrinow,et al.  On the pebbling threshold of paths and the pebbling threshold spectrum , 2008, Discret. Math..

[34]  Zhi-Wei Sun Unification of zero-sum problems, subset sums and covers of ℤ , 2003 .

[35]  Alfred Geroldinger,et al.  On Davenport's Constant , 1992, J. Comb. Theory, Ser. A.

[36]  G. F. Clements On existence of distinct representative sets for subsets of a finite set , 1970 .

[37]  Erin W. Chambers,et al.  Pebbling and optimal pebbling in graphs , 2008 .

[38]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[39]  L. Lovász Combinatorial problems and exercises , 1979 .

[40]  Daniel J. Kleitman,et al.  An Addition Theorem on the Integers Modulo n , 1989 .

[41]  Ko-Wei Lih,et al.  Hamiltonian uniform subset graphs , 1987, J. Comb. Theory, Ser. B.

[42]  Glenn H. Hurlbert,et al.  The pebbling threshold of the square of cliques , 2008, Discret. Math..

[43]  Paul Erdös,et al.  On random graphs, I , 1959 .

[44]  Jeffrey A. Boyle Thresholds for random distributions on graph sequences with applications to pebbling , 2002, Discret. Math..

[45]  Nathaniel G. Watson,et al.  Cover pebbling numbers and bounds for certain families of graphs , 2004 .

[46]  A. Hilton A THEOREM ON FINITE SETS , 1976 .

[47]  Glenn H. Hurlbert,et al.  An application of graph pebbling to zero-sum sequences in abelian groups , 2004 .

[48]  Glenn H. Hurlbert,et al.  Pebbling in diameter two graphs and products of paths , 1997, J. Graph Theory.

[49]  Andrzej Czygrinow,et al.  Thresholds for families of multisets, with an application to graph pebbling , 2003, Discret. Math..

[50]  S. Lang Number Theory III , 1991 .

[51]  T. Friedman,et al.  Optimal pebbling of paths and cycles , 2005 .

[52]  Xin Jin,et al.  Weighted sums in finite cyclic groups , 2004, Discret. Math..

[53]  Glenn H. Hurlbert,et al.  Generalizations of Graham's pebbling conjecture , 2012, Discret. Math..

[54]  Alfred Geroldinger On a Conjecture of Kleitman and Lemke , 1993 .

[55]  David Moews Optimally pebbling hypercubes and powers , 1998, Discret. Math..

[56]  Weidong Gao On Davenport's constant of finite abelian groups with rank three , 2000, Discret. Math..

[57]  David Moews,et al.  Pebbling graphs , 1992, J. Comb. Theory, Ser. B.

[58]  Weidong Gao,et al.  Zero-sum problems and coverings by proper cosets , 2003, Eur. J. Comb..

[59]  Rongquan Feng,et al.  Graham’s pebbling conjecture on product of complete bipartite graphs , 2001 .

[60]  Glenn Hurlbert A Survey of Graph Pebbling , 2004 .

[61]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[62]  David S. Herscovici Graham's pebbling conjecture on products of cycles , 2003, J. Graph Theory.

[63]  Andrzej Czygrinow,et al.  On pebbling threshold functions for graph sequences , 2002, Discret. Math..

[64]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[65]  Anant P. Godbole,et al.  Improved pebbling bounds , 2008, Discret. Math..

[66]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[67]  P. Erdös Applications of Probabilistic Methods to Graph Theory , 2022 .

[68]  Boris Bukh Maximum pebbling number of graphs of diameter three , 2006 .