GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

[1]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[3]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[4]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[5]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[6]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[7]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[8]  Fiona E. N. LeBeau,et al.  Region-Specific Reduction in Entorhinal Gamma Oscillations and Parvalbumin-Immunoreactive Neurons in Animal Models of Psychiatric Illness , 2006, The Journal of Neuroscience.

[9]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[11]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[12]  B. György The Brain’s Default State: Self-Organized Oscillations in Rest and Sleep , 2006 .

[13]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[15]  F. Benes,et al.  Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects , 1996, Neuroscience.

[16]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[17]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[18]  R. McCarley,et al.  Abnormal Neural Synchrony in Schizophrenia , 2003, The Journal of Neuroscience.

[19]  E. Cherubini,et al.  In the developing rat hippocampus a tonic GABAA‐mediated conductance selectively enhances the glutamatergic drive of principal cells , 2007, The Journal of physiology.

[20]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[21]  Nelson Spruston,et al.  Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[22]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[23]  T. Sejnowski,et al.  Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands , 2000, Hippocampus.

[24]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[25]  Nancy Kopell,et al.  Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. , 2005, Journal of neurophysiology.

[26]  T. Woo,et al.  Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder , 2007, Schizophrenia Research.

[27]  D. L. Martin,et al.  Two isoforms of glutamate decarboxylase: why? , 1998, Trends in pharmacological sciences.

[28]  H. M. Morris,et al.  Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia , 2008, Molecular Psychiatry.

[29]  M. Danik,et al.  The Hippocamposeptal Pathway Generates Rhythmic Firing of GABAergic Neurons in the Medial Septum and Diagonal Bands: An Investigation Using a Complete Septohippocampal Preparation In Vitro , 2008, The Journal of Neuroscience.

[30]  Alex M Thomson,et al.  Electrical coupling between pyramidal cells in adult cortical regions , 2007, Brain cell biology.

[31]  A. Sampson,et al.  Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. , 2001, Archives of general psychiatry.

[32]  Laurent Groc,et al.  AMPA signalling in nascent glutamatergic synapses: there and not there! , 2006, Trends in Neurosciences.

[33]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[34]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[35]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[36]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Paula Tallal,et al.  Temporal processing, speech perception and hemispheric asymmetry , 1980, Trends in Neurosciences.

[38]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[39]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[40]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[41]  Stephen P. Baker,et al.  Prefrontal Dysfunction in Schizophrenia Involves Mixed-Lineage Leukemia 1-Regulated Histone Methylation at GABAergic Gene Promoters , 2007, The Journal of Neuroscience.

[42]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[43]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[44]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[45]  Ole Paulsen,et al.  Hippocampal gamma‐frequency oscillations: from interneurones to pyramidal cells, and back , 2005, The Journal of physiology.

[46]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[47]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[49]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[50]  G. González-Burgos,et al.  Pathophysiologically based treatment interventions in schizophrenia , 2006, Nature Medicine.

[51]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[52]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[53]  Rosa Cossart,et al.  Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta Frequency , 2007, The Journal of Neuroscience.

[54]  Norbert Hájos,et al.  Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro , 2006, The Journal of Neuroscience.

[55]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[56]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[57]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[58]  D. Lewis,et al.  Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[59]  A. Thomson,et al.  Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABAa receptor ligands , 2003, The Journal of physiology.

[60]  A. Bacci,et al.  Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons , 2006, Neuron.

[61]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .

[62]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[63]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[64]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[65]  D. Kullmann,et al.  GABA uptake regulates cortical excitability via cell type–specific tonic inhibition , 2003, Nature Neuroscience.

[66]  W. Singer,et al.  Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex , 2004, The Journal of Neuroscience.

[67]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[68]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[69]  Y. Yanagawa,et al.  Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits , 2006, The Journal of Neuroscience.

[70]  T. Bártfai,et al.  A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons , 2006, The Journal of Neuroscience.

[71]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[72]  D. Melchitzky,et al.  Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex , 2005, Neuroscience.

[73]  H. M. Morris,et al.  Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. , 2008, Cerebral cortex.

[74]  A. Marty,et al.  Developmental Changes in Parvalbumin Regulate Presynaptic Ca2+ Signaling , 2005, The Journal of Neuroscience.

[75]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[76]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[77]  J. Paysan,et al.  Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  S. Akbarian,et al.  Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders , 2006, Brain Research Reviews.

[79]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[80]  J. Pierri,et al.  Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. , 2001, The American journal of psychiatry.

[81]  Istvan Mody,et al.  Spike timing of lacunosom-moleculare targeting interneurons and CA3 pyramidal cells during high-frequency network oscillations in vitro. , 2007, Journal of neurophysiology.

[82]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[83]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[84]  W. Singer,et al.  Dysfunctional Long-Range Coordination of Neural Activity during Gestalt Perception in Schizophrenia , 2006, The Journal of Neuroscience.

[85]  G. Buzsáki Rhythms of the brain , 2006 .

[86]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[87]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[88]  R. Pearce,et al.  Muscarinic blockade weakens interaction of gamma with theta rhythms in mouse hippocampus , 2007, The European journal of neuroscience.

[89]  D. Simons,et al.  Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. , 2003, Cerebral cortex.

[90]  P. Goldman-Rakic The cortical dopamine system: role in memory and cognition. , 1998, Advances in pharmacology.

[91]  Sze Py L-Glutamate decarboxylase. , 1979 .

[92]  D. Prince,et al.  Functional Autaptic Neurotransmission in Fast-Spiking Interneurons: A Novel Form of Feedback Inhibition in the Neocortex , 2003, The Journal of Neuroscience.

[93]  D. Prince,et al.  Major Differences in Inhibitory Synaptic Transmission onto Two Neocortical Interneuron Subclasses , 2003, The Journal of Neuroscience.

[94]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[95]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[96]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[97]  Miles A Whittington,et al.  Induction by kainate of theta frequency rhythmic activity in the rat medial septum–diagonal band complex in vitro , 2005, The Journal of physiology.

[98]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[99]  G. Westbrook,et al.  Synapse Density Regulates Independence at Unitary Inhibitory Synapses , 2003, The Journal of Neuroscience.

[100]  G. Buzsáki,et al.  A neural coding scheme formed by the combined function of gamma and theta oscillations. , 2008, Schizophrenia bulletin.

[101]  J. Hablitz,et al.  Dopaminergic modulation of local network activity in rat prefrontal cortex. , 2007, Journal of neurophysiology.

[102]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[103]  D. Lewis,et al.  Postnatal development of parvalbumin‐ and GABA transporter‐immunoreactive axon terminals in monkey prefrontal cortex , 2002, The Journal of comparative neurology.

[104]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[105]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[106]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[107]  Mark E. Williams,et al.  Glutamate decarboxylase65-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain , 2000, Journal of Chemical Neuroanatomy.

[108]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[109]  J. Rinzel,et al.  Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons , 1993, Neuroscience.

[110]  Wenjun Gao,et al.  Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex , 2009, Neuropsychopharmacology.

[111]  D. Lewis,et al.  Neuroplasticity of Neocortical Circuits in Schizophrenia , 2008, Neuropsychopharmacology.

[112]  Rosa Cossart,et al.  Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons , 2002, Neuron.

[113]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[114]  D. Lewis,et al.  Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction , 2004, Psychopharmacology.

[115]  N L Harrison,et al.  Activation and deactivation rates of recombinant GABA(A) receptor channels are dependent on alpha-subunit isoform. , 1997, Biophysical journal.

[116]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[117]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[118]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[119]  Fiona E. N. LeBeau,et al.  A Model of Atropine‐Resistant Theta Oscillations in Rat Hippocampal Area CA1 , 2002, The Journal of physiology.

[120]  The Physics–EEG Interface , 2006 .

[121]  J. Hablitz,et al.  Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. , 2005, Journal of neurophysiology.

[122]  R. Schneggenburger,et al.  Parvalbumin Is a Mobile Presynaptic Ca2+ Buffer in the Calyx of Held that Accelerates the Decay of Ca2+ and Short-Term Facilitation , 2007, The Journal of Neuroscience.

[123]  H. Möhler,et al.  GABAA receptor diversity and pharmacology , 2006, Cell and Tissue Research.

[124]  R. Yuste Origin and Classification of Neocortical Interneurons , 2005, Neuron.

[125]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[126]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[127]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[128]  D. Ulrich,et al.  Dendritic resonance in rat neocortical pyramidal cells. , 2002, Journal of neurophysiology.

[129]  S. Nelson,et al.  Structural and Functional Properties of Hippocampal Neurons , 2006 .

[130]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[131]  A. Thomson,et al.  Differential sensitivity to Zolpidem of IPSPs activated by morphologically identified CA1 interneurons in slices of rat hippocampus , 2000, The European journal of neuroscience.

[132]  A. Thomson,et al.  Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. , 2008, Cerebral cortex.

[133]  D. Melchitzky,et al.  Dendritic‐targeting GABA neurons in monkey prefrontal cortex: Comparison of somatostatin‐ and calretinin‐immunoreactive axon terminals , 2008, Synapse.

[134]  G B Ermentrout,et al.  Fine structure of neural spiking and synchronization in the presence of conduction delays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[135]  J. Seamans,et al.  Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[136]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[137]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[138]  C. Gonzalez-Islas,et al.  Dopamine enhances spatiotemporal spread of activity in rat prefrontal cortex. , 2005, Journal of neurophysiology.

[139]  C. Beasley,et al.  Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins , 2002, Biological Psychiatry.

[140]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[141]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[142]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[143]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[144]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[145]  Z. Nusser AMPA amd NMDA receptors: similarities and differences in their synaptic distribution , 2000, Current Opinion in Neurobiology.

[146]  A. D. De Blas,et al.  Synaptic and nonsynaptic localization of GABAA receptors containing the α5 subunit in the rat brain , 2006 .

[147]  T. Woo,et al.  Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. , 1997, The American journal of psychiatry.

[148]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[149]  Daniel Durstewitz,et al.  Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. , 2007, Cerebral cortex.

[150]  David A Lewis,et al.  Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. , 2008, The American journal of psychiatry.

[151]  W. Freiwald,et al.  Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. , 2004, Cerebral cortex.

[152]  M. Poo,et al.  Spike-Timing-Dependent Plasticity of Neocortical Excitatory Synapses on Inhibitory Interneurons Depends on Target Cell Type , 2007, The Journal of Neuroscience.

[153]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[154]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[155]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[156]  H. Monyer,et al.  Differential Expression of Group I Metabotropic Glutamate Receptors in Functionally Distinct Hippocampal Interneurons , 2000, The Journal of Neuroscience.

[157]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[158]  J. Meador-Woodruff,et al.  Abnormal Glutamate Receptor Expression in the Medial Temporal Lobe in Schizophrenia and Mood Disorders , 2007, Neuropsychopharmacology.

[159]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[160]  J. Meador-Woodruff,et al.  NMDA receptors and schizophrenia. , 2007, Current opinion in pharmacology.

[161]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[162]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[163]  Daniel Johnston,et al.  Plasticity of Intrinsic Excitability during Long-Term Depression Is Mediated through mGluR-Dependent Changes in Ih in Hippocampal CA1 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[164]  P. Somogyi,et al.  Input‐dependent synaptic targeting of α2‐subunit‐containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat , 2001, The European journal of neuroscience.

[165]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[166]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[167]  Afia B Ali,et al.  Involvement of post‐synaptic kainate receptors during synaptic transmission between unitary connections in rat neocortex , 2003, The European journal of neuroscience.

[168]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[169]  A. Zaitsev,et al.  Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. , 2006, Cerebral cortex.

[170]  I. Soltesz,et al.  GABAA Receptor–Mediated Miniature Postsynaptic Currents and α-Subunit Expression in Developing Cortical Neurons , 1999 .

[171]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[172]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[173]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[174]  David A Lewis,et al.  Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[175]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[176]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[177]  Fiona E. N. LeBeau,et al.  A model of gamma‐frequency network oscillations induced in the rat CA3 region by carbachol in vitro , 2000, The European journal of neuroscience.

[178]  R. Nicoll,et al.  Synaptic kainate receptors , 2000, Current Opinion in Neurobiology.

[179]  David A Lewis,et al.  Synaptic efficacy during repetitive activation of excitatory inputs in primate dorsolateral prefrontal cortex. , 2004, Cerebral cortex.

[180]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[181]  Jeremy K Seamans,et al.  Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. , 2002, Journal of neurophysiology.

[182]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[183]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[184]  Kevin L Quick,et al.  Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase , 2007, Science.

[185]  C. McBain,et al.  GABAergic Input onto CA3 Hippocampal Interneurons Remains Shunting throughout Development , 2006, The Journal of Neuroscience.

[186]  I. Soltesz,et al.  GABAA Receptor – Mediated Miniature Postsynaptic Currents and a-Subunit Expression in Developing Cortical Neurons , 1999 .

[187]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.