Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces

Abstract Quantile functional linear regression was previously studied using functional principal component analysis. Here we consider the alternative penalized estimator based on the reproducing kernel Hilbert spaces (RKHS) setting. The motivation is that, for the functional linear (mean) regression, it has already been shown in Cai and Yuan (2012) that the approach based on RKHS performs better when the coefficient function does not align well with the eigenfunctions of the covariance kernel. We establish its optimal convergence rate in prediction risk using the Rademacher complexity to bound appropriate empirical processes. Some Monte Carlo studies are carried out for illustration.

[1]  Hongtu Zhu,et al.  Quantile regression for functional partially linear model in ultra-high dimensions , 2019, Comput. Stat. Data Anal..

[2]  M. Yuan,et al.  A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.

[3]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[4]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[5]  Frédéric Ferraty,et al.  Cross-validated estimations in the single-functional index model , 2008 .

[6]  P. Sarda,et al.  Smoothing splines estimators for functional linear regression , 2009, 0902.4344.

[7]  Patrick J. Heagerty,et al.  Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children , 1999 .

[8]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[9]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[10]  H. Lian Nonlinear functional models for functional responses in reproducing kernel hilbert spaces , 2007, math/0702120.

[11]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[12]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[13]  C. Preda Regression models for functional data by reproducing kernel Hilbert spaces methods , 2007 .

[14]  Jian Huang,et al.  Oracle inequalities for sparse additive quantile regression in reproducing kernel Hilbert space , 2018 .

[15]  Yun Yang,et al.  Hanson–Wright inequality in Hilbert spaces with application to $K$-means clustering for non-Euclidean data , 2018, 1810.11180.

[16]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[17]  Adela Martínez-Calvo Presmoothing in Functional Linear Regression , 2012 .

[18]  Kengo Kato,et al.  Estimation in functional linear quantile regression , 2012, 1202.4850.

[19]  Heng Lian,et al.  Convergence of functional k-nearest neighbor regression estimate with functional responses , 2011, Electronic Journal of Statistics.

[20]  Frédéric Ferraty,et al.  The Functional Nonparametric Model and Application to Spectrometric Data , 2002, Comput. Stat..

[21]  Fan Wang,et al.  Regularized partially functional quantile regression , 2017, J. Multivar. Anal..

[22]  D. Pollard Convergence of stochastic processes , 1984 .

[23]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[24]  Xuming He,et al.  Detecting Differential Expressions in GeneChip Microarray Studies , 2007 .

[25]  T. Tony Cai,et al.  Minimax and Adaptive Prediction for Functional Linear Regression , 2012 .