Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1
暂无分享,去创建一个
[1] Frédéric Nataf,et al. The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..
[2] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[3] H. Heinrich,et al. G. Meinardus, Approximation of Functions: Theory and Numerical Methods. Translated by L. L. Schumaker. (Springer Tracts in Natural Philosophy, Volume 13) VIII + 198 S. m. 21 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 54,– , 1968 .
[4] É. Picard. Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires , 1893 .
[5] M. Gander,et al. Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation , 1999 .
[6] G. Meinardus. Approximation of Functions: Theory and Numerical Methods , 1967 .
[7] Alberto L. Sangiovanni-Vincentelli,et al. The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[8] Martin J. Gander,et al. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..
[9] M. Gander. Overlapping Schwarz Waveform Relaxation for Parabolic Problems , 1998 .