Optimal control and numerical optimization for missile interception guidance

Conventional guidance algorithms for exo-atmospheric missile interception, such as Proportional Navigation, provide guidance laws that are derived from conceptual heuristics where certain simplifications have to be made. Typically, these guidance laws have the disadvantage of not being able to fully take into account system and/or vehicle limitations such as maximum thrust. In this paper, optimal control and numerical optimization methods are used to provide a guidance scheme that may incorporate these critical constraints, while still ensuring a successful hit-to-kill interception of the target. Therein, a direct optimal control approach is deployed, based on multiple shooting and a sequential quadratic programming algorithm for solving the resulting nonlinear optimization problem. Numerical results for three distinctive transcription methods for deriving the nonlinear program are presented that illustrate the overall efficiency of numerical optimization as a guidance scheme.

[1]  Paul Zarchan,et al.  Tactical and strategic missile guidance , 1990 .

[2]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[3]  R. Fletcher Practical Methods of Optimization , 1988 .

[4]  Bruce A. Conway,et al.  Optimal Trajectories of Anti-Satellite Missiles , 2009 .

[5]  George M Siouris,et al.  Missile Guidance and Control Systems , 2004 .

[6]  Sebastian Sager,et al.  Numerical methods for mixed-integer optimal control problems , 2006 .

[7]  J. Gregory,et al.  Constrained optimization in the calculus of variations and optimal control theory , 1992 .

[8]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[9]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[10]  Florian Holzapfel,et al.  Optimal Control Framework for Impulsive Missile Interception Guidance , 2013 .

[11]  Nicholas I. M. Gould,et al.  On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..

[12]  Tal Shima,et al.  Optimal Guidance-to-Collision Law for an Accelerating Exoatmospheric Interceptor Missile , 2013 .

[13]  J. Freud Theory Of Reflectance And Emittance Spectroscopy , 2016 .

[14]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[15]  Peter Krämer-Eis,et al.  Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen , 1985 .

[16]  Kai Virtanen,et al.  Near-Optimal Missile Avoidance Trajectories via Receding Horizon Control , 2006 .

[17]  Optimal control of a space shuttle, and numerical simulations , 2003 .

[18]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[19]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[20]  Stephen J. Wright,et al.  Springer Series in Operations Research , 1999 .

[21]  Florian Holzapfel,et al.  Multiple Shooting Condensing for Online Gain Scheduling in Interceptor Guidance , 2014 .

[22]  P. Gill,et al.  Some theoretical properties of an augmented lagrangian merit function , 1986 .

[23]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[25]  J. Albersmeyer Adjoint-based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems , 2010 .

[26]  H. Bock,et al.  Efficient direct multiple shooting for nonlinear model predictive control on long horizons , 2012 .

[27]  P. R. Mahapatra,et al.  The proportional navigation dilemma-pure or true? , 1990 .

[28]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[29]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[30]  Tal Shima,et al.  Exo-Atmospheric Guidance of an Accelerating Interceptor Missile , 2008 .