Mesozoic high-Mg andesites from the Daohugou area, Inner Mongolia: Upper-crustal fractional crystallization of parental melt derived from metasomatized lithospheric mantle wedge

Abstract Mineral chemistry, major- and trace-element data, zircon U–Pb ages, and Sr–Nd isotopic data are presented for a suite of volcanic rocks from the Daohugou area, Ningcheng City, Inner Mongolia, on the northern margin of the North China Craton. Samples from the suite are of basaltic andesite to rhyolite in composition, with the rocks containing 2 have high MgO, Cr, and Ni contents, and classify as high-Mg andesites (HMAs). Zircons from a rhyolite yielded weighted mean 206 Pb/ 238 U age of 164 ± 1 Ma, indicating that the Daohugou volcanic suite is coeval with the Tiaojishan Formation of northern Hebei and western Liaoning Province. The HMAs have similar enriched-mantle I (EMI)-type isotopic compositions to each other, with low e Nd (t) values, moderate ( 87 Sr/ 86 Sr) i ratios, enrichment in LREEs relative to LILEs, and depletion in HFSEs (e.g., Nb, Ta, Ti), indicating formation through protracted fractional crystallization of a common parental magma. The unusually low CaO contents and CaO/FeO ratios of olivine phenocrysts in the HMAs suggest that the parental melt was subduction-related. The results of Rhyolite-MELTS modelling indicates that HMAs may form through upper-crustal fractional crystallization from arc basalts. Therefore, the Daohugou HMAs were most likely formed through fractional crystallization of a parental melt derived from metasomatized lithospheric mantle at crustal depths. The addition of “water” to the cratonic keel may have played a key role in the destruction of the North China Craton.

[1]  Y. Niu Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic-Cenozoic Basaltic Volcanism in Eastern China , 2005 .

[2]  R. Walker,et al.  Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton , 2008 .

[3]  M. Benoit,et al.  Spatial and temporal evolution of basalts and magnesian andesites (''bajaites'') from Baja California, Mexico: the role of slab melts , 2003 .

[4]  Wei Yang,et al.  Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton , 2008 .

[5]  K. Hirose Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts , 1997 .

[6]  B. Windley,et al.  Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction , 2010, American Journal of Science.

[7]  N. Chatterjee,et al.  Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts , 2005 .

[8]  R. Shinjo,et al.  Origin of mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? , 2002 .

[9]  Dunyi Liu,et al.  3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China , 1996 .

[10]  Q. Xia,et al.  High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere , 2013 .

[11]  R. Carlson,et al.  Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton , 2002 .

[12]  Q. Zhang,et al.  Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet , 2003 .

[13]  M. Menzies,et al.  Geodynamics of the North China Craton , 2013 .

[14]  F. Meng,et al.  Mesozoic–Cenozoic mantle evolution beneath the North China Craton: A new perspective from Hf–Nd isotopes of basalts , 2015 .

[15]  R. Zhu,et al.  40Ar/39Ar dating of ignimbrite from Inner Mongolia, northeastern China, indicates a post‐Middle Jurassic age for the overlying Daohugou Bed , 2004 .

[16]  Yongqing Liu,et al.  U-Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues , 2006 .

[17]  W. Fan,et al.  Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites , 2003 .

[18]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[19]  L. Xinyu Isotope geochronology of the fossil-bearing beds in the Daohugou area, Ningcheng, Inner Mongolia , 2004 .

[20]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[21]  S. Hart,et al.  Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes☆ , 1993 .

[22]  Y. Tatsumi Melting experiments on a high-magnesian andesite , 1981 .

[23]  Xiaohong Wang,et al.  Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: Insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt–peridotite interaction , 2012 .

[24]  A. Nutman,et al.  Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton , 1992 .

[25]  W. Griffin,et al.  Mantle metasomatism beneath western Victoria, Australia. I. Metasomatic processes in Cr-diopside lherzolites , 1988 .

[26]  Guowei Zhang,et al.  Geologic framework and tectonic evolution of the Qinling orogen, central China , 2000 .

[27]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[28]  W. Fan,et al.  Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts , 2002 .

[29]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[30]  Bin Chen,et al.  Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications , 2013 .

[31]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[32]  W. Griffin,et al.  Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: the Role of Water in Intraplate Magmatism and Cratonic Destruction , 2016 .

[33]  W. Griffin,et al.  Phanerozoic Evolution of the Lithosphere Beneath the Sino‐Korean Craton , 2013 .

[34]  W. Griffin,et al.  Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis , 2007 .

[35]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[36]  Yongsheng He,et al.  High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust , 2008 .

[37]  P. Castillo Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico , 2008 .

[38]  G. Zellmer,et al.  High-Mg andesite genesis by upper crustal differentiation , 2010, Journal of the Geological Society.

[39]  R. Kay Aleutian magnesian andesites: Melts from subducted Pacific ocean crust , 1978 .

[40]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[41]  J. Blundy,et al.  Magma Evolution and Open System Processes at Shiveluch Volcano: Insights From Phenocryst Zoning and Melt Inclusions , 2005 .

[42]  N. Pearson,et al.  An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature , 1987 .

[43]  G. Hanson,et al.  Mantle-derived Archaean monozodiorites and trachyandesites , 1984, Nature.

[44]  William L. Griffin,et al.  Are Lithospheres Forever? Tracking Changes in Subcontinental Lithospheric Mantle Through Time , 2001 .

[45]  M. Ghiorso,et al.  MELTS_Excel: A Microsoft Excel‐based MELTS interface for research and teaching of magma properties and evolution , 2015 .

[46]  P. Kelemen 4.21 – One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2014 .

[47]  Xu-jie Shu,et al.  Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: Geochemistry, petrogenesis and tectonic implications , 2014 .

[48]  Dunyi Liu,et al.  New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton , 2008, American Journal of Science.

[49]  Hong‐fu Zhang,et al.  Widespread refertilization of cratonic and circum-cratonic lithospheric mantle , 2013 .

[50]  J. Charvet,et al.  Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt , 2013 .

[51]  J. Chesley,et al.  High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt , 2007 .

[52]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[53]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[54]  Yigang Xu,et al.  Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism , 2001 .

[55]  M. Drummond,et al.  A model for Trondhjemite‐Tonalite‐Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons , 1990 .

[56]  W. Griffin,et al.  Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution , 2001 .

[57]  R. Rudnick,et al.  Recycling lower continental crust in the North China craton , 2004, Nature.

[58]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[59]  W. McDonough,et al.  Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton , 2004 .

[60]  R. Arculus,et al.  Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas , 2006 .

[61]  P. Kelemen Genesis of high Mg# andesites and the continental crust , 1995 .

[62]  J. Baker,et al.  On and Off the North China Craton: Where is the Archaean Keel? , 2000 .

[63]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[64]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[65]  Shui-Yuan Yang,et al.  A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis , 2016, Microscopy and Microanalysis.

[66]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[67]  W. Fan,et al.  Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (∼825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications , 2012 .

[68]  M. Santosh,et al.  The early Precambrian odyssey of the North China Craton: A synoptic overview , 2011 .

[69]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[70]  Q. Qian,et al.  Formation of High-Mg Diorites through Assimilation of Peridotite by Monzodiorite Magma at Crustal Depths , 2010 .

[71]  M. Norman,et al.  Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids) , 2010 .

[72]  E. Takazawa,et al.  Repeated magmatism at 34 Ma and 23-20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc , 2014 .

[73]  M. Santosh Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction , 2010 .

[74]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[75]  Bo Wang,et al.  Some Jurassic Palaeontinidae (Insecta, Hemiptera) from Daohugou, Inner Mongolia, China , 2006 .

[76]  Q. Ma,et al.  Hydrous orthopyroxene-rich pyroxenite source of the Xinkailing high magnesium andesites, Western Liaoning: Implications for the subduction-modified lithospheric mantle and the destruction mechanism of the North China Craton , 2017 .

[77]  R. Zhu,et al.  Timing of destruction of the North China Craton , 2012 .

[78]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[79]  C. Lo,et al.  Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China , 1999 .

[80]  Yuan Chongxi Discovery of Two Kinds of Protofeathered Pterosaurs in the Mesozoic Daohugou Biota in the Ningcheng Region and Its Stratigraphic and Biologic Significances , 2002 .