Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems

Parallel memetic algorithms (PMAs) are a class of modern parallel meta-heuristics that combine evolutionary algorithms, local search, parallel and distributed computing technologies for global optimization. Recent studies on PMAs for large-scale complex combinatorial optimization problems have shown that they converge to high quality solutions significantly faster than canonical GAs and MAs. However, the use of local learning for every individual throughout the PMA search can be a very computationally intensive and inefficient process. This paper presents a study on two diversity-adaptive strategies, i.e., (1) diversity-based static adaptive strategy (PMA-SLS) and (2) diversity-based dynamic adaptive strategy (PMA-DLS) for controlling the local search frequency in the PMA search. Empirical study on a class of NP-hard combinatorial optimization problem, particularly large-scale quadratic assignment problems (QAPs) shows that the diversity-adaptive PMA converges to competitive solutions at significantly lower computational cost when compared to the canonical MA and PMA. Furthermore, it is found that the diversity-based dynamic adaptation strategy displays better robustness in terms of solution quality across the class of QAP problems considered. Static adaptation strategy on the other hand requires extra effort in selecting suitable parameters to suit the problems in hand.

[1]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[2]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[4]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[5]  Jadranka Skorin-Kapov,et al.  Tabu Search Applied to the Quadratic Assignment Problem , 1990, INFORMS J. Comput..

[6]  Meng Joo Er,et al.  Study of migration topology in island model parallel hybrid-GA for large scale quadratic assignment problems , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[7]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[8]  Pablo Moscato,et al.  Applying Memetic Algorithms to the Analysis of Microarray Data , 2003, EvoWorkshops.

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  Richard Bradwell,et al.  Parallel asynchronous memetic algorithms , 1999 .

[11]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[12]  Konstantinos G. Margaritis,et al.  Performance comparison of memetic algorithms , 2004, Appl. Math. Comput..

[13]  Yu Yuan,et al.  Extensive Testing of a Hybrid Genetic Algorithm for Solving Quadratic Assignment Problems , 2002, Comput. Optim. Appl..

[14]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[15]  Panos M. Pardalos,et al.  Quadratic Assignment and Related Problems , 1994 .

[16]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[17]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[18]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[19]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[20]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[21]  W. Hart Adaptive global optimization with local search , 1994 .

[22]  Panos M. Pardalos,et al.  A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[23]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[24]  Sigeru Omatu,et al.  Efficient Genetic Algorithms Using Simple Genes Exchange Local Search Policy for the Quadratic Assignment Problem , 2000, Comput. Optim. Appl..

[25]  T. L. Ward,et al.  Solving Quadratic Assignment Problems by ‘Simulated Annealing’ , 1987 .

[26]  R. Belew,et al.  Evolutionary algorithms with local search for combinatorial optimization , 1998 .

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Tang Jing,et al.  A parallel hybrid GA for combinatorial optimization using grid technology , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[31]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[32]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[33]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[34]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[35]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[36]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[37]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[38]  Wan-Chi Siu,et al.  A study of the Lamarckian evolution of recurrent neural networks , 2000, IEEE Trans. Evol. Comput..

[39]  Ravi Shankar,et al.  Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing , 2004, Eur. J. Oper. Res..

[40]  B. Freisleben,et al.  A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..