Covariant maturation of nocifensive oral behaviour and c-fos expression in rat superior colliculus

[1]  P. Redgrave,et al.  Parallel analyses of nociceptive neurones in rat superior colliculus by using c‐fos immunohistochemistry and electrophysiology under different conditions of anaesthesia , 2000, The Journal of comparative neurology.

[2]  K. Franklin,et al.  Improving the efficiency of the formalin test , 1999, PAIN®.

[3]  D. Price Psychological Mechanisms of Pain and Analgesia , 1999 .

[4]  J. Maisog,et al.  Pain intensity processing within the human brain: a bilateral, distributed mechanism. , 1999, Journal of neurophysiology.

[5]  T. Herdegen,et al.  Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins , 1998, Brain Research Reviews.

[6]  B. Stein Neural mechanisms for synthesizing sensory information and producing adaptive behaviors , 1998, Experimental Brain Research.

[7]  C. Teng,et al.  The formalin test: a dose–response analysis at three developmental stages , 1998, Pain.

[8]  G. Barr Maturation of the Biphasic Behavioral and Heart Rate Response in the Formalin Test , 1998, Pharmacology Biochemistry and Behavior.

[9]  G. Barr,et al.  Formalin-induced c-fos expression in the spinal cord of fetal rats , 1997, Pain.

[10]  P Redgrave,et al.  Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain , 1997, Neuroscience.

[11]  P. Redgrave,et al.  Analysis of nociceptive neurones in the rat superior colliculus using c‐fos immunohistochemistry , 1996, The Journal of comparative neurology.

[12]  P. Dean,et al.  Differential expression of fos-like immunoreactivity in the descending projections of superior colliculus after electrical stimulation in the rat , 1996, Behavioural Brain Research.

[13]  P. Redgrave,et al.  Nociceptive neurones in rat superior colliculus , 1996, Experimental Brain Research.

[14]  P. Redgrave,et al.  Nociceptive neurones in rat superior colliculus , 1996, Experimental Brain Research.

[15]  R. Bandler,et al.  Common patterns of increased and decreased Fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat , 1996 .

[16]  A. Woda,et al.  The orofacial formalin test in rats: effects of different formalin concentrations , 1995, Pain.

[17]  G. Barr,et al.  The induction of Fos-like immunoreactivity by noxious thermal, mechanical and chemical stimuli in the lumbar spinal cord of infant rats , 1995, Pain.

[18]  R. F. Westbrook,et al.  The formalin test: scoring properties of the first and second phases of the pain response in rats , 1995, Pain.

[19]  R. Melzack,et al.  The formalin test: a validation of the weighted-scores method of behavioural pain rating , 1993, Pain.

[20]  B. Stein,et al.  The Merging of the Senses , 1993 .

[21]  P. Dean,et al.  Regional expression of fos-like immunoreactivity following seizures induced by pentylenetetrazole and maximal electroshock , 1992, Experimental Neurology.

[22]  F. V. Abbott,et al.  The behavioral response to formalin in preweanling rats , 1992, Pain.

[23]  Joe C. Adams,et al.  Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. , 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[24]  S. Hunskaar,et al.  The formalin test: an evaluation of the method , 1992, Pain.

[25]  W. P. Smotherman,et al.  Motor competition in the prenatal ontogeny of species-typical behaviour , 1992, Animal Behaviour.

[26]  M. Fitzgerald Development of pain mechanisms. , 1991, British medical bulletin.

[27]  B. Irthum,et al.  Oral nociceptive activity in the rat superior colliculus , 1991, Brain Research.

[28]  M. Fanselow,et al.  Tonic nociception in neonatal rats , 1990, Pharmacology Biochemistry and Behavior.

[29]  E. Bullitt Expression of C‐fos‐like protein as a marker for neuronal activity following noxious stimulation in the rat , 1990, The Journal of comparative neurology.

[30]  S. Hunt,et al.  Spinal c-fos induction by sensory stimulation in neonatal rats , 1990, Neuroscience Letters.

[31]  J. Sonnenberg,et al.  Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure , 1989, Neuron.

[32]  R. Inoki,et al.  Modified formalin test: characteristic biphasic pain response , 1989, Pain.

[33]  B E Stein,et al.  Nociceptive neurons in rat superior colliculus: response properties, topography, and functional implications. , 1989, Journal of neurophysiology.

[34]  M. Fitzgerald Pain and analgesia in neonates , 1987, Trends in Neurosciences.

[35]  S. Hunt,et al.  Induction of c-fos-like protein in spinal cord neurons following sensory stimulation , 1987, Nature.

[36]  B. Stein,et al.  Response properties of nociceptive and low-threshold mechanoreceptive neurons in the hamster superior colliculus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  M. Fitzgerald Cutaneous primary afferent properties in the hind limb of the neonatal rat. , 1987 .

[38]  M. Fitzgerald,et al.  The postnatal physiological and neurochemical development of peripheral sensory C fibres , 1984, Neuroscience.

[39]  V. Pickel,et al.  Early prenatal development of substance P and enkephalin‐containing neurons in the rat , 1982, The Journal of comparative neurology.

[40]  S. Hsu,et al.  The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. , 1981, American journal of clinical pathology.

[41]  B. Stein,et al.  Properties of superior colliculus neurons in the golden hamster , 1979, The Journal of comparative neurology.

[42]  D. Dubuisson,et al.  The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats , 1977, Pain.

[43]  R M Bradley,et al.  Fetal sensory receptors. , 1975, Physiological reviews.

[44]  D. Stelzner The normal postnatal development of synaptic end-feet in the lumbosacral spinal cord and of responses in the hind limbs of the albino rat. , 1971, Experimental neurology.

[45]  R. Bolles,et al.  The ontogeny of behaviour in the albino rat , 1964 .

[46]  P. Dean,et al.  Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase , 2004, Experimental Brain Research.

[47]  M. Kirby,et al.  Appearance of acid phosphatase in neonatal rat substantia gelatinosa , 2004, Experimental Brain Research.

[48]  J. Price,et al.  Brain mediation of active and passive emotional coping. , 2000, Progress in brain research.

[49]  P. Redgrave,et al.  Chapter 24 Functional anatomy of nociceptive neurones in rat superior colliculus , 1996 .

[50]  G. Barr Ontogeny of nociception and antinociception. , 1995, NIDA research monograph.

[51]  Johan J. Bolhuis,et al.  Causal Mechanisms of Behavioural Development: Development of cognition , 1994 .

[52]  K. Berridge,et al.  Causal Mechanisms of Behavioural Development: The development of action patterns , 1994 .

[53]  G. Holstege,et al.  The emotional motor system. , 1992, European journal of morphology.

[54]  W. G. Hall,et al.  Developmental psychobiology: prenatal, perinatal, and early postnatal aspects of behavioral development. , 1987, Annual review of psychology.

[55]  V. Hamburger,et al.  Prenatal development of spontaneous and evoked activity in the rat (Rattus norvegicus albinus). , 1971, Behaviour.