Squidpy: a scalable framework for spatial single cell analysis

Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale. Here, we present Squidpy, a Python framework that brings together tools from omics and image analysis to enable scalable description of spatial molecular data, such as transcriptome or multivariate proteins. Squidpy provides both infrastructure and numerous analysis methods that allow to efficiently store, manipulate and interactively visualize spatial omics data.

[1]  Fabian J Theis,et al.  Integrated intra‐ and intercellular signaling knowledge for multicellular omics analysis , 2021, Molecular systems biology.

[2]  D. Pe’er,et al.  Sparcle: assigning transcripts to cells in multiplexed images , 2021, bioRxiv.

[3]  Helena L. Crowell,et al.  SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor , 2021, bioRxiv.

[4]  X. Zhuang Spatially resolved single-cell genomics and transcriptomics by imaging , 2021, Nature Methods.

[5]  J. Lundeberg,et al.  Spatially resolved transcriptomics adds a new dimension to genomics , 2021, Nature Methods.

[6]  J. Marioni,et al.  Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis , 2020, bioRxiv.

[7]  Tong Li,et al.  Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics , 2020, bioRxiv.

[8]  C. Conrad,et al.  Single nucleus and in situ RNA sequencing reveals cell topographies in the human pancreas. , 2020, Gastroenterology.

[9]  Cindy C. Guo,et al.  High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue , 2020, Cell.

[10]  Soham Mandal,et al.  SplineDist: Automated Cell Segmentation with Spline Curves , 2020, bioRxiv.

[11]  Viktor Petukhov,et al.  Bayesian segmentation of spatially resolved transcriptomics data , 2020, bioRxiv.

[12]  Aviv Regev,et al.  Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram , 2020, bioRxiv.

[13]  Tamás Korcsmáros,et al.  Integrated intra- and intercellular signaling knowledge for multicellular omics analysis , 2020, bioRxiv.

[14]  J. Lundeberg,et al.  Seamless integration of image and molecular analysis for spatial transcriptomics workflows , 2020, BMC Genomics.

[15]  T. Alexandrov Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. , 2020, Annual review of biomedical data science.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  Q. Nguyen,et al.  stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues , 2020, bioRxiv.

[18]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[19]  M. Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[20]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[21]  H. Moch,et al.  The single-cell pathology landscape of breast cancer , 2020, Nature.

[22]  Roland Eils,et al.  Cell segmentation-free inference of cell types from in situ transcriptomics data , 2019, Nature Communications.

[23]  Garry Nolan,et al.  MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure , 2019, Science Advances.

[24]  Foo Wei Ten,et al.  Single nucleus and in situ RNA sequencing reveals cell topographies in the human pancreas. , 2020, Gastroenterology.

[25]  Foo Wei Ten,et al.  Single nucleus RNA sequencing maps acinar cell states in a human pancreas cell atlas , 2019, bioRxiv.

[26]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[27]  Guocheng Yuan,et al.  Giotto, a toolbox for integrative analysis and visualization of spatial expression data , 2020 .

[28]  Long Cai,et al.  Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data , 2019, bioRxiv.

[29]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[30]  Lucas Pelkmans,et al.  Multiplexed protein maps link subcellular organization to cellular states , 2018, Science.

[31]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[32]  Anne E Carpenter,et al.  CellProfiler 3.0: Next-generation image processing for biology , 2018, PLoS biology.

[33]  Eugene W. Myers,et al.  Cell Detection with Star-convex Polygons , 2018, MICCAI.

[34]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[35]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[36]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[37]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[38]  Bernd Bodenmiller,et al.  miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data , 2017, Nature Methods.

[39]  Stephan Hoyer,et al.  xarray: N-D labeled arrays and datasets in Python , 2017 .

[40]  P. Sorger,et al.  Cyclic Immunofluorescence (CycIF), A Highly Multiplexed Method for Single‐cell Imaging , 2016, Current protocols in chemical biology.

[41]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[42]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[43]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[44]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2016, Cell.

[45]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[46]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[47]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[48]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[49]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[50]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[51]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[52]  Gaël Varoquaux,et al.  Proceedings of the 20th Python in Science Conference 2021 (SciPy 2021), Virtual Conference, July 12 - July 18, 2021 , 2008, SciPy.

[53]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[54]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[55]  Sergio J. Rey,et al.  PySAL: A Python Library of Spatial Analytical Methods , 2010 .

[56]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[57]  S. Borgatti,et al.  The centrality of groups and classes , 1999 .