Levy (stable) probability densities and mechanical relaxation in solid polymers

Early investigations by Weber, R. and F. Kohlrausch, Maxwell, and Boltzmann of relaxation in viscoelastic solids are reviewed. A two-state model stress-tensor describing strain coupling to internal conformations of a polymer chain is used to derive a linear response version of the Boltzmann superposition principle for shear stress relaxation. The relaxation function of Kohlrauschφ(t)= exp[−(t/τα)] is identical to the Williams-Watts empirical dielectric relaxation function and in the model corresponds to the autocorrelation function of a segment's differential shape anisotropy tensor. By analogy with the dielectric problem, exp[−(t/τα)] is interpreted as the survival probability of a frozen segment in a swarm of hopping defects with a stable waiting-time distributionAt−α for defect motion. The exponent a is the fractal dimension of a hierarchical scaling set of defect hopping times. Integral transforms ofφ(t) needed for data analysis are evaluated; the cosine and inverse-Laplace transforms are stable probability densities. The reciprocal kernel for short-time compliance is discussed.

[1]  J. McLennan,et al.  Statistical Mechanics of Viscoelasticity , 1965 .

[2]  R. Zwanzig,et al.  Dielectric relaxation and dynamic susceptibility of a one‐dimensional model for perpendicular‐dipole polymers , 1975 .

[3]  C. T. White,et al.  On the origin of the universal dielectric response in condensed matter , 1979, Nature.

[4]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[5]  P. Wolynes,et al.  Transition state and Brownian motion theories of solitons , 1980 .

[6]  G. Patterson Photon correlation spectroscopy of bulk polymers , 1983 .

[7]  J. Hopkinson,et al.  XVI. Residual charge of the leyden jar.—Dielectric properties of different glasses , 1877, Philosophical Transactions of the Royal Society of London.

[8]  S. Rackovsky,et al.  Linear response theory and the mechanical energy relaxations of solid high polymer systems , 1977 .

[9]  J. Z. Fullmer,et al.  Historical studies in the physical sciences , 1976 .

[10]  J. Bendler,et al.  Proton spin relaxation and molecular motion in a bulk polycarbonate , 1983 .

[11]  R. Zwanzig From classical dynamics to continuous time random walks , 1983 .

[12]  J. Skinner Kinetic Ising model for polymer dynamics: Applications to dielectric relaxation and dynamic depolarized light scattering , 1983 .

[13]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[14]  L. Struik Physical aging in amorphous polymers and other materials , 1978 .

[15]  R. Zwanzig Frequency‐Dependent Transport Coefficients in Fluid Mechanics , 1965 .

[16]  J. Ferry Viscoelastic properties of polymers , 1961 .

[17]  C. T. Moynihan,et al.  COMPARISON AND ANALYSIS OF RELAXATION PROCESSES AT THE GLASS TRANSITION TEMPERATURE * , 1981 .

[18]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[19]  A. Wintner The singularities of Cauchy’s distributions , 1941 .

[20]  E W Montroll,et al.  On the Williams-Watts function of dielectric relaxation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[21]  F. Kohlrausch Experimental-Untersuchungen über die elastische Nachwirkung bei der Torsion, Ausdehnung und Biegung , 1876 .

[22]  P. Bordewijk,et al.  Defect-diffusion models of dielectric relaxation , 1975 .

[23]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[24]  Electron scavenging in glasses , 1979 .

[25]  W. G. Hoover,et al.  Isothermal elastic constants for argon. theory and Monte Carlo calculations , 1969 .

[26]  Herbert Leaderman,et al.  Elastic and creep properties of filamentous materials and other high polymers , 1943 .

[27]  S. Glarum,et al.  Dielectric Relaxation of Isoamyl Bromide , 1960 .

[28]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[29]  E. Montroll,et al.  On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation , 1984 .

[30]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.