Glutathione and Transition-Metal Homeostasis in Escherichia coli

ABSTRACT Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-type ATPase ZntA, the additional deletion of the GSH biosynthesis system led to a strong decrease in resistance to Cd(II) and Zn(II). Likewise, in mutant cells without the P-type ATPase CopA, the removal of GSH led to a strong decrease of Cu(II) resistance. The precursor of GSH, γ-glutamylcysteine (γEC), was not able to compensate for a lack of GSH. On the contrary, γEC-containing cells were less copper and cadmium tolerant than cells that contained neither γEC nor GSH. Thus, GSH may play an important role in trace-element metabolism not only in higher organisms but also in bacteria.

[1]  M. Takagi,et al.  Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase , 2003, Applied and Environmental Microbiology.

[2]  D. Molenaar,et al.  Glutathione Protects Lactococcus lactis against Oxidative Stress , 2003, Applied and Environmental Microbiology.

[3]  S. Silver,et al.  Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain , 1989, Journal of bacteriology.

[4]  S. Rapoport,et al.  Reduction-potential of Glutathione , 1964, Nature.

[5]  C. Cobbett,et al.  Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. , 2002, Annual review of plant biology.

[6]  C. Rensing,et al.  Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli , 2006, Journal of bacteriology.

[7]  D. Luu,et al.  Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase , 2003, Applied and Environmental Microbiology.

[8]  M. Saier,et al.  CHR, a Novel Family of Prokaryotic Proton Motive Force-Driven Transporters Probably Containing Chromate/Sulfate Antiporters , 1998, Journal of bacteriology.

[9]  R. C. Fahey,et al.  Novel thiols of prokaryotes. , 2001, Annual review of microbiology.

[10]  M. Mergeay,et al.  Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals , 1985, Journal of bacteriology.

[11]  I. Booth,et al.  Glutathione Is Involved in Environmental Stress Responses in Rhizobium tropici, Including Acid Tolerance , 2000, Journal of bacteriology.

[12]  D. Fu,et al.  Structure of the Zinc Transporter YiiP , 2007, Science.

[13]  D. Nies Bacterial Transition Metal Homeostasis , 2007 .

[14]  G. Gadd,et al.  Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae , 2004, Biometals.

[15]  Mindy Reynolds,et al.  Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. , 2006, Free radical biology & medicine.

[16]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Saby,et al.  Escherichia coli Resistance to Chlorine and Glutathione Synthesis in Response to Oxygenation and Starvation , 1999, Applied and Environmental Microbiology.

[18]  D. Downs,et al.  Lesions in gshA (Encoding γ-l-Glutamyl-l-Cysteine Synthetase) Prevent Aerobic Synthesis of Thiamine in Salmonella enterica Serovar Typhimurium LT2 , 2000, Journal of bacteriology.

[19]  C. Rensing,et al.  CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. , 2001, Biochemical and biophysical research communications.

[20]  H. Ohtake,et al.  Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid , 1987, Journal of bacteriology.

[21]  Christopher Rensing,et al.  FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress , 2004, Archives of Microbiology.

[22]  C. Rensing,et al.  The ATP Hydrolytic Activity of Purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli * , 2000, The Journal of Biological Chemistry.

[23]  Peter Neubauer,et al.  A Novel Monothiol Glutaredoxin (Grx4) from Escherichia coli Can Serve as a Substrate for Thioredoxin Reductase* , 2005, Journal of Biological Chemistry.

[24]  M. Hecker,et al.  S-Cysteinylation Is a General Mechanism for Thiol Protection of Bacillus subtilis Proteins after Oxidative Stress* , 2007, Journal of Biological Chemistry.

[25]  T. Logan,et al.  Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli , 1990, Journal of bacteriology.

[26]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[27]  S. Silver,et al.  Effects of intracellular glutathione on sensitivity of Escherichia coli to mercury and arsenite. , 1998, Biochemical and biophysical research communications.

[28]  M. Fontecave,et al.  Cobalt Stress in Escherichia coli , 2007, Journal of Biological Chemistry.

[29]  Kerstin Helbig,et al.  Cadmium Toxicity in Glutathione Mutants of Escherichia coli , 2008, Journal of bacteriology.

[30]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[31]  Q. Fernaǹdo,et al.  The formation of constants of mercury(II)--glutathione complexes. , 1996, Chemical research in toxicology.

[32]  S. Miller,et al.  Identification of an Ancillary Protein, YabF, Required for Activity of the KefC Glutathione-Gated Potassium Efflux System in Escherichia coli , 2000, Journal of bacteriology.

[33]  K. Hantke,et al.  The ZnuABC high‐affinity zinc uptake system and its regulator Zur in Escherichia coli , 1998, Molecular microbiology.

[34]  M. Maguire,et al.  The Metal Permease ZupT from Escherichia coli Is a Transporter with a Broad Substrate Spectrum , 2005, Journal of bacteriology.

[35]  M. McEvoy,et al.  A novel copper-binding fold for the periplasmic copper resistance protein CusF. , 2005, Biochemistry.

[36]  L. Dominey,et al.  Kinetics and mechanism of Zn(II) complexation with reduced glutathione. , 1983, Journal of inorganic biochemistry.

[37]  A. Mulchandani,et al.  Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. , 2000, Biotechnology and bioengineering.

[38]  D. Nies,et al.  Microbial heavy-metal resistance , 1999, Applied Microbiology and Biotechnology.

[39]  I. Booth,et al.  Importance of Glutathione for Growth and Survival of Escherichia coli Cells: Detoxification of Methylglyoxal and Maintenance of Intracellular K+ , 1998, Journal of bacteriology.

[40]  J. Fuchs,et al.  Isolation of an Escherichia coli mutant deficient in glutathione synthesis , 1975, Journal of bacteriology.

[41]  P. Apontoweil,et al.  Glutathione biosynthesis in Escherichia coli K 12. Properties of the enzymes and regulation. , 1975, Biochimica et biophysica acta.

[42]  Dean P. Jones,et al.  Glutathione redox potential in response to differentiation and enzyme inducers. , 1999, Free radical biology & medicine.

[43]  R. Moreno-Sánchez,et al.  Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. , 2005, FEMS microbiology reviews.

[44]  N. Brown,et al.  ZntR is a Zn(II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli , 1999, Molecular microbiology.

[45]  G. Newton,et al.  Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. , 1995, Methods in enzymology.

[46]  S. Ray,et al.  Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. , 1995, The Biochemical journal.

[47]  J. Eaton,et al.  Bacterial glutathione: a sacrificial defense against chlorine compounds , 1996, Journal of bacteriology.

[48]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[49]  A. Holmgren,et al.  Thioredoxin and glutaredoxin systems. , 2019, The Journal of biological chemistry.

[50]  C. Rensing,et al.  Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli , 2003, Journal of bacteriology.

[51]  S. Corticeiro,et al.  Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum , 2006 .

[52]  T. O’Halloran,et al.  DNA Distortion Mechanism for Transcriptional Activation by ZntR, a Zn(II)-responsive MerR Homologue in Escherichia coli * , 1999, The Journal of Biological Chemistry.

[53]  C. Rensing,et al.  Genes Involved in Copper Homeostasis inEscherichia coli , 2001, Journal of bacteriology.

[54]  M. Vaneechoutte,et al.  Exogenous Glutathione Completes the Defense against Oxidative Stress in Haemophilus influenzae , 2003, Journal of bacteriology.

[55]  H. C. Robinson,et al.  A Bacterial Glutathione Transporter (Escherichia coli CydDC) Exports Reductant to the Periplasm* , 2005, Journal of Biological Chemistry.

[56]  D. Persson,et al.  Copper(I) complexes of penicillamine and glutathione. , 1979, Journal of inorganic biochemistry.

[57]  D. Downs,et al.  Cobalt Targets Multiple Metabolic Processes in Salmonella enterica , 2007, Journal of bacteriology.

[58]  S. Pereira,et al.  Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. , 2005, Canadian journal of microbiology.

[59]  R. C. Fahey,et al.  Copyright © 1998, American Society for Microbiology Import and Metabolism of Glutathione by Streptococcus mutans , 1997 .

[60]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[61]  E. Kosower,et al.  The glutathione status of cells. , 1978, International review of cytology.

[62]  P. A. Rea,et al.  Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase , 2000, The Journal of Biological Chemistry.

[63]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[64]  C. Rensing,et al.  The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Beckwith,et al.  Roles of thiol-redox pathways in bacteria. , 2001, Annual review of microbiology.

[66]  J. Beckwith,et al.  The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm* , 1997, The Journal of Biological Chemistry.

[67]  C. Rensing,et al.  ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter inEscherichia coli , 2001, Journal of bacteriology.

[68]  G. Klug,et al.  The Glutathione-Glutaredoxin System in Rhodobacter capsulatus: Part of a Complex Regulatory Network Controlling Defense against Oxidative Stress , 2004, Journal of bacteriology.

[69]  Seung Hyun Kang,et al.  Bacteria Metabolically Engineered for Enhanced Phytochelatin Production and Cadmium Accumulation , 2007, Applied and Environmental Microbiology.

[70]  C. Rensing,et al.  Functional analysis of the Escherichia coli zinc transporter ZitB. , 2002, FEMS microbiology letters.

[71]  Jon Beckwith,et al.  Bridge over Troubled Waters Sensing Stress by Disulfide Bond Formation , 1999, Cell.

[72]  D. Wesenberg,et al.  Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. , 2007, Plant, cell & environment.

[73]  J. Davies,et al.  Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes , 1996, Journal of bacteriology.

[74]  Ludwik Adamowicz,et al.  A theoretical study of zinc(II) interactions with amino acid models and peptide fragments , 2007, JBIC Journal of Biological Inorganic Chemistry.

[75]  C. Rensing,et al.  CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Hideyuki Suzuki,et al.  The yliA, -B, -C, and -D Genes of Escherichia coli K-12 Encode a Novel Glutathione Importer with an ATP-Binding Cassette , 2005, Journal of bacteriology.