Randomization , Sums of Squares , Near-Circuits , and Faster Real Root Counting

Suppose thatf is a real univariate polynomial of degree D with exactly 4 monomial terms. We present a deterministic algorithm of complexi ty polynomial in logD that, for most inputs, counts the number of real roots of f . The best previous algorithms have complexity super-linear in D. We also discuss connections to sums of squares and Adiscriminants, including explicit obstructions to express ing positive definite sparse polynomials as sums of squares of few sparse polynomials. Our key the oretical tool is the introduction of efficiently computable chamber cones , which bound regions in coefficient space where the number of real roots of f can be computed easily. Much of our theory extends ton-variate(n+3)-nomials.

[1]  J. M. Rojas,et al.  Optimizing n-variate (n+k)-nomials for small k , 2009, Theor. Comput. Sci..

[2]  Jean B. Lasserre,et al.  Moments and sums of squares for polynomial optimization and related problems , 2009, J. Glob. Optim..

[3]  Bernard Mourrain,et al.  Experimental evaluation and cross-benchmarking of univariate real solvers , 2009, SNC '09.

[4]  J. Maurice Rojas,et al.  Optimization and NP_R-completeness of certain fewnomials , 2009, SNC '09.

[5]  J. Maurice Rojas,et al.  Faster real feasibility via circuit discriminants , 2009, ISSAC '09.

[6]  Par C. Sturm Mémoire sur la résolution des équations numériques , 2009 .

[7]  Masakazu Muramatsu,et al.  A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones , 2009, Comput. Optim. Appl..

[8]  Raymond Curran,et al.  Restriction of A-discriminants and dual defect toric varieties , 2005, J. Symb. Comput..

[9]  J. M. Rojas,et al.  Extremal Real Algebraic Geometry and A-Discriminants , 2006, math/0609485.

[10]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[11]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[12]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[13]  Projective Duality of Toric Manifolds and Defect Polytopes , 2006 .

[14]  B. Sturmfels,et al.  Tropical Discriminants , 2005, math/0510126.

[15]  A. Tsikh,et al.  Singularities of hypergeometric functions in several variables , 2005, Compositio Mathematica.

[16]  Mikael Passare,et al.  Amoebas: their spines and their contours , 2005 .

[17]  Eric Gaudron,et al.  The rational case in the theory of linear forms in logarithms , 2004 .

[18]  Mikael Passare,et al.  Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. , 2004 .

[19]  J. M. Rojas,et al.  High probability analysis of the condition number of sparse polynomial systems , 2002, Theor. Comput. Sci..

[20]  Rekha R. Thomas,et al.  Algebraic and geometric methods in discrete optimization , 2003, Math. Program..

[21]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[22]  Y. Nesterenko,et al.  Linear Forms in Logarithms of Rational Numbers , 2003 .

[23]  Alicia Dickenstein,et al.  Elimination Theory in Codimension 2 , 2002, J. Symb. Comput..

[24]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[25]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[26]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[27]  S. Zelditch,et al.  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[28]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[29]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[30]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[31]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[32]  M. Kapranov,et al.  A characterization ofA-discriminantal hypersurfaces in terms of the logarithmic Gauss map , 1991 .

[33]  E. Kostlan Complexity theory of numerical linear algebra , 1988 .

[34]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[35]  E. Salamin,et al.  Computation of π Using Arithmetic-Geometric Mean , 1976 .

[36]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.

[37]  Y. Pourchet,et al.  Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques , 1971 .

[38]  W. Habicht Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .