A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD

A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, σS (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by σS. We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3′-RACE, an experimental approach that promises to be of use in predicting other sRNA–target interactions in bacteria.

[1]  J. Rosenbusch,et al.  Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. , 1998, Journal of bacteriology.

[2]  M. Prevost,et al.  Shigella flexneri induces apoptosis in infected macrophages , 1992, Nature.

[3]  G. Storz,et al.  The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. , 2011, Molecular cell.

[4]  D. Apirion Isolation, genetic mapping and some characterization of a mutation in Escherichia coli that affects the processing of ribonuleic acid. , 1978, Genetics.

[5]  G. Storz,et al.  Global analysis of small RNA and mRNA targets of Hfq , 2003, Molecular microbiology.

[6]  J. Slauch,et al.  Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. , 2002, Gene.

[7]  R. Backofen,et al.  Computational prediction of sRNAs and their targets in bacteria , 2010 .

[8]  R. Hengge-aronis,et al.  The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. , 1996, Genes & development.

[9]  L. Bossi,et al.  Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. , 2009, Genes & development.

[10]  J. Vogel,et al.  Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq , 2008, PLoS genetics.

[11]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[12]  H. Margalit,et al.  A survey of small RNA-encoding genes in Escherichia coli. , 2003, Nucleic acids research.

[13]  J. Vogel,et al.  Acid stress activation of the σE stress response in Salmonella enterica serovar Typhimurium , 2009, Molecular microbiology.

[14]  G. Storz,et al.  Reprogramming of anaerobic metabolism by the FnrS small RNA , 2010, Molecular microbiology.

[15]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[16]  H. Aiba,et al.  RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. , 2005, Genes & development.

[17]  N. Majdalani,et al.  Positive regulation by small RNAs and the role of Hfq , 2010, Proceedings of the National Academy of Sciences.

[18]  Raju Tomer,et al.  A small non‐coding RNA of the invasion gene island (SPI‐1) represses outer membrane protein synthesis from the Salmonella core genome , 2007, Molecular microbiology.

[19]  L. Argaman,et al.  fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. , 2000, Journal of molecular biology.

[20]  Hanah Margalit,et al.  Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence , 2008, Nucleic acids research.

[21]  F. Baneyx,et al.  Hyperosmotic shock induces the σ32 and σE stress regulons of Escherichia coli , 1999, Molecular microbiology.

[22]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter σS dependent? Role of the −13/−14 nucleotide promoter positions and region 2.5 of σS , 2001 .

[23]  L. Bossi,et al.  Loss of Hfq activates the σE‐dependent envelope stress response in Salmonella enterica , 2006, Molecular microbiology.

[24]  E. Wagner,et al.  Sigma E controls biogenesis of the antisense RNA MicA , 2007, Nucleic acids research.

[25]  H. Noller,et al.  mRNA Helicase Activity of the Ribosome , 2005, Cell.

[26]  Alessandro Pietrelli,et al.  In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements , 2011, Nucleic acids research.

[27]  J. Vogel,et al.  Small RNA binding to 5' mRNA coding region inhibits translational initiation. , 2008, Molecular cell.

[28]  J. Vogel,et al.  Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP‐dependent riboregulator of OmpX synthesis , 2008, Molecular microbiology.

[29]  D. R. Lee,et al.  Comparison of outer membrane porin proteins produced by Escherichia coli and Salmonella typhimurium , 1980, Journal of bacteriology.

[30]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[31]  S. Gottesman,et al.  The Crp-Activated Small Noncoding Regulatory RNA CyaR (RyeE) Links Nutritional Status to Group Behavior , 2008, Journal of bacteriology.

[32]  Jean-François Jacques,et al.  Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. , 2011, Genes & development.

[33]  J. Vogel,et al.  A conserved small RNA promotes discoordinate expression of the glmUS operon mRNA to activate GlmS synthesis. , 2007, Journal of molecular biology.

[34]  J. Vogel,et al.  Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes , 2009, RNA biology.

[35]  R. Hengge-aronis,et al.  Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase , 2002, Microbiology and Molecular Biology Reviews.

[36]  J. Vogel,et al.  Small non-coding RNAs and the bacterial outer membrane. , 2006, Current opinion in microbiology.

[37]  L. Bossi,et al.  Insertion Hot Spot for Horizontally Acquired DNA within a Bidirectional Small-RNA Locus in Salmonella enterica , 2008, Journal of bacteriology.

[38]  Jörg Vogel,et al.  Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon , 2011, Proceedings of the National Academy of Sciences.

[39]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[40]  H. Bremer,et al.  Escherichia coli ppGpp synthetase II activity requires spoT. , 1991, The Journal of biological chemistry.

[41]  L. Bossi,et al.  Porin biogenesis activates the sigma(E) response in Salmonella hfq mutants. , 2008, Biochimie.

[42]  L. Bossi,et al.  Recognition of heptameric seed sequence underlies multi‐target regulation by RybB small RNA in Salmonella enterica , 2010, Molecular microbiology.

[43]  N. Majdalani,et al.  DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Peter Neubauer,et al.  Limiting factors in Escherichia coli fed-batch production of recombinant proteins. , 2003, Biotechnology and bioengineering.

[45]  G. Storz,et al.  Small RNAs in Escherichia coli. , 1999, Trends in microbiology.

[46]  G. Storz,et al.  Modulating the outer membrane with small RNAs. , 2006, Genes & development.

[47]  J. Vogel,et al.  Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA , 2010, Proceedings of the National Academy of Sciences.

[48]  R. Hengge,et al.  The molecular basis of selective promoter activation by the σS subunit of RNA polymerase , 2007, Molecular microbiology.

[49]  G. Storz,et al.  MicC, a Second Small-RNA Regulator of Omp Protein Expression in Escherichia coli , 2004, Journal of bacteriology.

[50]  K. Tedin,et al.  Comparison of ΔrelA Strains of Escherichia coli and Salmonella enterica Serovar Typhimurium Suggests a Role for ppGpp in Attenuation Regulation of Branched-Chain Amino Acid Biosynthesis , 2001 .

[51]  N. Majdalani,et al.  The RpoS-mediated general stress response in Escherichia coli. , 2011, Annual review of microbiology.

[52]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[53]  S. Gottesman,et al.  A PhoQ/P‐regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides , 2009, Molecular microbiology.

[54]  J. Vogel,et al.  Translational Control and Target Recognition by Escherichia Coli Small Rnas in Vivo , 2022 .

[55]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[56]  P. Vuong,et al.  Novel Mechanism of Escherichia coli Porin Regulation , 2006, Journal of bacteriology.

[57]  T. Elliott,et al.  Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene , 1996, Journal of bacteriology.

[58]  J. Vogel,et al.  RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. , 2003, Nucleic acids research.

[59]  K. Rudd,et al.  rpoE, the gene encoding the second heat‐shock sigma factor, sigma E, in Escherichia coli. , 1995, The EMBO journal.

[60]  V. Wendisch,et al.  Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity , 2005, Journal of bacteriology.

[61]  S. Gottesman,et al.  SigmaE regulates and is regulated by a small RNA in Escherichia coli. , 2007, Journal of bacteriology.

[62]  S. Gottesman,et al.  A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  P. Youderian,et al.  Global Regulation of the Salmonella enterica Serovar Typhimurium Major Porin, OmpD , 2003, Journal of bacteriology.

[64]  J. Vogel,et al.  The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium , 2007, Molecular microbiology.

[65]  E. Martínez-García,et al.  Stationary phase in gram-negative bacteria. , 2010, FEMS microbiology reviews.

[66]  J. Vogel,et al.  A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles , 2008, Molecular microbiology.

[67]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA. , 2001, Molecular microbiology.

[68]  C. K. Vanderpool,et al.  The small RNA SgrS controls sugar–phosphate accumulation by regulating multiple PTS genes , 2011, Nucleic acids research.

[69]  T. Nyström,et al.  RpoS-dependent Promoters Require Guanosine Tetraphosphate for Induction Even in the Presence of High Levels of ςs * , 2000, The Journal of Biological Chemistry.

[70]  R. Burgess,et al.  Promoter recognition and discrimination by EσS RNA polymerase , 2001, Molecular microbiology.

[71]  S. Gottesman,et al.  Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA , 2010, The EMBO journal.

[72]  R. Hengge-aronis,et al.  Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli , 1997, Journal of bacteriology.

[73]  R. Hengge-aronis,et al.  The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. , 1994, Genes & development.

[74]  Vivek K. Mutalik,et al.  Promoter Strength Properties of the Complete Sigma E Regulon of Escherichia coli and Salmonella enterica , 2009, Journal of bacteriology.

[75]  S. Gottesman,et al.  The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. , 1996, The EMBO journal.

[76]  Thomas Nyström,et al.  Stationary-phase physiology. , 2003, Annual review of microbiology.

[77]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[79]  M. Cusick,et al.  Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Hengge-aronis,et al.  Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. , 1999, Current opinion in microbiology.

[81]  W. Wackernagel,et al.  Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. , 1995, Gene.

[82]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[83]  S. Gottesman,et al.  Effect of RyhB Small RNA on Global Iron Use in Escherichia coli , 2005, Journal of bacteriology.

[84]  G. Storz,et al.  A Small, Stable RNA Induced by Oxidative Stress: Role as a Pleiotropic Regulator and Antimutator , 1997, Cell.

[85]  C. Georgopoulos,et al.  The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. , 1995, The EMBO journal.

[86]  P. Bouloc,et al.  Down-regulation of Porins by a Small RNA Bypasses the Essentiality of the Regulated Intramembrane Proteolysis Protease RseP in Escherichia coli* , 2006, Journal of Biological Chemistry.

[87]  J. Vogel,et al.  Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq‐dependent small RNA , 2009, Molecular microbiology.

[88]  R. Griffey,et al.  A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. , 2002, Bio Systems.

[89]  H. Xiao,et al.  Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. , 1991, The Journal of biological chemistry.

[90]  J. Vogel,et al.  Pervasive post‐transcriptional control of genes involved in amino acid metabolism by the Hfq‐dependent GcvB small RNA , 2011, Molecular microbiology.

[91]  S. Gottesman Micros for microbes: non-coding regulatory RNAs in bacteria. , 2005, Trends in genetics : TIG.

[92]  J. Vogel,et al.  Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation , 2009, Nature Structural &Molecular Biology.

[93]  Chase L. Beisel,et al.  Base pairing small RNAs and their roles in global regulatory networks. , 2010, FEMS microbiology reviews.

[94]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[95]  J. Vogel,et al.  The role of Hfq in bacterial pathogens. , 2010, Current opinion in microbiology.

[96]  J. Gralla,et al.  Open complex formation in vitro by sigma38 (rpoS) RNA polymerase: roles for region 2 amino acids. , 2003, Journal of molecular biology.

[97]  C. Schnaitman,et al.  Evidence that the outer membrane protein gene nmpC of Escherichia coli K-12 lies within the defective qsr' prophage , 1985, Journal of bacteriology.

[98]  S. Gottesman,et al.  σE Regulates and Is Regulated by a Small RNA in Escherichia coli , 2007 .

[99]  S. Brantl Antisense RNAs in plasmids: control of replication and maintenance. , 2002, Plasmid.

[100]  B. Kallipolitis,et al.  Translational Regulation of Gene Expression by an Anaerobically Induced Small Non-coding RNA in Escherichia coli* , 2010, The Journal of Biological Chemistry.

[101]  R. Simons,et al.  Antisense RNA control in bacteria, phages, and plasmids. , 1994, Annual review of microbiology.

[102]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). , 2001, Molecular microbiology.

[103]  P. Valentin‐Hansen,et al.  Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. , 2006, Journal of molecular biology.

[104]  P. Valentin‐Hansen,et al.  Small RNAs controlling outer membrane porins. , 2007, Current opinion in microbiology.

[105]  G. Storz,et al.  GadY, a Small-RNA Regulator of Acid Response Genes in Escherichia coli , 2004, Journal of bacteriology.

[106]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA , 2001 .

[107]  B. Kallipolitis,et al.  Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. , 2008, Journal of molecular biology.