Inviscid limit for the derivative Ginzburg–Landau equation with small data in modulation and Sobolev spaces

Abstract Applying the frequency-uniform decomposition technique, we study the Cauchy problem for derivative Ginzburg–Landau equation u t = ( ν + i ) Δ u + λ → 1 ⋅ ∇ ( | u | 2 u ) + ( λ → 2 ⋅ ∇ u ) | u | 2 + α | u | 2 δ u , where δ ∈ N , λ → 1 , λ → 2 are complex constant vectors, ν ∈ [ 0 , 1 ] , α ∈ C . For n ≥ 3 , we show that it is uniformly global well posed for all ν ∈ [ 0 , 1 ] if initial data u 0 in modulation space M 2 , 1 s and Sobolev spaces H s + n / 2 ( s > 3 ) and ‖ u 0 ‖ L 2 is small enough. Moreover, we show that its solution will converge to that of the derivative Schrodinger equation in C ( 0 , T ; L 2 ) if ν → 0 and u 0 in M 2 , 1 s or H s + n / 2 with s > 4 . For n = 2 , we obtain the local well-posedness results and inviscid limit with the Cauchy data in M 1 , 1 s ( s > 3 ) and ‖ u 0 ‖ L 1 ≪ 1 .

[1]  E. Cordero,et al.  Remarks on Fourier multipliers and applications to the Wave equation , 2008, 0802.2801.

[2]  H. Helson Harmonic Analysis , 1983 .

[3]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[4]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[5]  Global wellposedness and limit behavior for the generalized finite-depth-fluid equation with small data in critical Besov spaces B˙2,1s , 2008 .

[6]  D. Haar,et al.  Men of physics , 1974 .

[7]  T. Ozawa,et al.  Global Existence of Small Classical Solutions to Nonlinear Schr\"odinger Equations , 2008 .

[8]  Alexander Mielke,et al.  The Ginzburg-Landau Equation in Its Role as a Modulation Equation , 2002 .

[9]  J. Ginibre,et al.  The Cauchy Problem in Local Spaces for the Complex Ginzburg—Landau Equation¶II. Contraction Methods , 1997 .

[10]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[11]  Brand,et al.  Interaction of localized solutions for subcritical bifurcations. , 1989, Physical review letters.

[12]  Gustavo Ponce,et al.  Global, small amplitude solutions to nonlinear evolution equations , 1983 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[15]  Global Existence of Solutions to the Derivative 2D Ginzburg–Landau Equation , 2000 .

[16]  Hongjun Gao,et al.  On the Initial-Value Problem for the Generalized Two-Dimensional Ginzburg–Landau Equation☆ , 1997 .

[17]  Thierry Cazenave,et al.  The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s , 1990 .

[18]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[19]  Baoxiang Wang,et al.  The global Cauchy problem for the NLS and NLKG with small rough data , 2007 .

[20]  Yoshihisa Nakamura,et al.  The inviscid limit for the complex Ginzburg-Landau equation , 2003 .

[21]  Nakao Hayashi,et al.  The initial value problem for the derivative nonlinear Schrödinger equation in the energy space , 1993 .

[22]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[23]  Zhao Lifeng,et al.  The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg–Landau equation in H1 , 2004 .

[24]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .

[25]  A. Stefanov On quadratic derivative Schrödinger equations in one space dimension , 2007 .

[26]  Felipe Linares,et al.  On the Davey-Stewartson systems , 1993 .

[27]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[28]  H. Chihara Gain of regularity for semilinear Schrödinger equations , 1999 .

[29]  Baoxiang Wang,et al.  Inviscid limit for the energy-critical complex Ginzburg-Landau equation , 2008 .

[30]  Wang Baoxiang,et al.  The inviscid limit of the derivative complex Ginzburg–Landau equation , 2004 .

[31]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[32]  K. Okoudjou,et al.  Local well‐posedness of nonlinear dispersive equations on modulation spaces , 2007, 0704.0833.

[33]  Bixiang Wang,et al.  Finite dimensional behaviour for the derivative Ginzburg-Landau equation in two spatial dimensions , 1995 .

[34]  T. Iwabuchi Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices , 2010 .

[35]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[36]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[37]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[38]  C. Kenig,et al.  Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3 , 2007 .

[39]  Unimodular Fourier multipliers for modulation spaces , 2006, math/0609097.

[40]  Baoxiang Wang The limit behavior of solutions for the Cauchy problem of the complex Ginzburg‐Landau equation , 2002 .

[41]  A. Jüngel,et al.  Inviscid Limits¶of the Complex Ginzburg–Landau Equation , 2000 .

[42]  Baoxiang Wang,et al.  Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data , 2009 .