A geometric method for automatic extraction of sulcal fundi

Sulcal fundi are 3D curves that lie in the depths of the cerebral cortex and are often used as landmarks for downstream computations in brain imaging. We present a sequence of geometric algorithms which automatically extract the sulcal fundi from magnetic resonance images and represent them as smooth polygons lying on the cortical surface. First we compute a geometric depth measure for each point on the cortical surface, and based on this information we extract sulcal regions by checking the connectivity above a depth threshold. We then extract the endpoints of each fundus and delineate the fundus by thinning each connected region keeping the endpoints fixed. The curves thus defined are smoothed using weighted splines on the gray-matter surface to yield high-quality representations of the sulcal fundi

[1]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[2]  Michael I. Miller,et al.  Dynamic Programming Generation of Curves on Brain Surfaces , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  J. Mazziotta,et al.  Age‐related morphology trends of cortical sulci , 2005, Human brain mapping.

[4]  Guillermo Sapiro,et al.  A Geometric Method for Automatic Extraction of Sulcal Fundi , 2007, IEEE Transactions on Medical Imaging.

[5]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[6]  Michel Desvignes,et al.  3D curves tracking and its application to cortical sulci detection , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[7]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[8]  F. Mémoli,et al.  Implicit brain imaging , 2004, NeuroImage.

[9]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[10]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[11]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[12]  Xiao Han,et al.  Statistical Study on Cortical Sulci of Human Brains , 2001, IPMI.

[13]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[14]  Jerry L. Prince,et al.  An automated method for finding curves of sulcal fundi on human cortical surfaces , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[15]  Nicolas Royackkers Modelisation et reconnaissance des sillons du cortex cerebral humain , 1997 .

[16]  Jonas Larsson,et al.  Imaging vision : Functional mapping of intermediate visual processes in man , 2001 .

[17]  Kiralee M. Hayashi,et al.  Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia , 2004, NeuroImage.

[18]  Gabriele Lohmann,et al.  Extracting line representations of sulcal and gyral patterns in MR images of the human brain , 1998, IEEE Transactions on Medical Imaging.

[19]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[20]  A Bartesaghi,et al.  A system for the generation of curves on 3D brain images , 2001, Human brain mapping.

[21]  Isabelle Bloch,et al.  A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns , 2003, IEEE Transactions on Medical Imaging.

[22]  Arthur W. Toga,et al.  Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images , 2006, NeuroImage.

[23]  Y. Samson,et al.  "Sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns. , 2005, Neurologia medico-chirurgica.

[24]  Michael I. Miller,et al.  Landmark Matching via Large Deformation Diffeomorphisms on the Sphere , 2004, Journal of Mathematical Imaging and Vision.

[25]  Christian Barillot,et al.  Modeling Cortical Sulci with Active Ribbons , 1997, Int. J. Pattern Recognit. Artif. Intell..

[26]  Alexis Gourdon,et al.  The Marching lines algorithm : new results and proofs , 1993 .

[27]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[28]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[29]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[30]  S. Mauch A Fast Algorithm for Computing the Closest Point and Distance Transform , 2000 .

[31]  Markus H. Gross,et al.  Signed distance transform using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[32]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[33]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[34]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[35]  Lok Ming Lui,et al.  Automatic landmark tracking applied to optimize brain conformal mapping , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[36]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[37]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[38]  C. Davatzikos,et al.  Finding 3D parametric representations of the deep cortical folds , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[39]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[40]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[41]  H. Pottmann,et al.  Energy-minimizing splines in manifolds , 2004, SIGGRAPH 2004.

[42]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.